Показать сокращенную информацию
Artificial intelligence in disease diagnosis: balancing concerns and reliance on outcomes
dc.contributor.advisor | Al-Kamali, M. F. S. H. | |
dc.contributor.author | Ali, H. A. H. | |
dc.coverage.spatial | Гомель | ru_RU |
dc.date.accessioned | 2025-05-30T08:25:30Z | |
dc.date.available | 2025-05-30T08:25:30Z | |
dc.date.issued | 2025 | |
dc.identifier.citation | Ali, H. A. H. Artificial intelligence in disease diagnosis: balancing concerns and reliance on outcomes / H. A. H. Ali ; scientific supervisor M. F. S. H. Al-Kamali // II Международный молодёжный научно-культурный форум студентов, магистрантов, аспирантов и молодых ученых : сборник материалов, Гомель, 22-24 января 2025 г. / Гомел. гос. техн. ун-т имени П. О. Сухого [Республика Беларусь], Таизский университет [Республика Йемен], Научная организация исследований и инноваций [Республика Йемен] ; под общ. ред. А. А. Бойко. – Гомель : ГГТУ им. П. О. Сухого, 2025. – C. 45. | ru_RU |
dc.identifier.uri | https://elib.gstu.by/handle/220612/41680 | |
dc.description.abstract | This study explores the role of Artificial Intelligence (AI) in disease diagnosis, highlighting its accuracy, limitations, and associated concerns. Findings indicate an average diagnostic accuracy of 92%, but challenges such as algorithmic bias and the need for transparency remain significant. The research underscores the importance of integrating AI with clinical judgment and emphasizes strategies for effective implementation in healthcare settings. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | ГГТУ им. П.О. Сухого | ru_RU |
dc.subject | Artificial Intelligence | ru_RU |
dc.subject | Disease diagnosis | ru_RU |
dc.subject | Diagnostic accuracy | ru_RU |
dc.subject | Algorithmic bias | ru_RU |
dc.subject | Clinical integration | ru_RU |
dc.subject | Ethical considerations | ru_RU |
dc.title | Artificial intelligence in disease diagnosis: balancing concerns and reliance on outcomes | ru_RU |
dc.type | Article | ru_RU |