dc.contributor.advisor | Yan, R. | |
dc.contributor.author | Jie, L. | |
dc.contributor.author | Lijun, Sh. | |
dc.contributor.author | Guoqing, L. | |
dc.coverage.spatial | Гомель | ru_RU |
dc.date.accessioned | 2023-11-15T11:14:52Z | |
dc.date.available | 2023-11-15T11:14:52Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Jie, L. An Improved Super-Resolution Generative Adversarial Network / L. Jie, Sh. Lijun, L. Guoqing ; науч. рук. R.Yan // Исследования и разработки в области машиностроения, энергетики и управления : материалы XXIII Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых, Гомель, 27–28 апр. 2023 г. : в 2 ч. Ч. 2 / М-во образования Респ. Беларусь, Гомел. гос. техн. ун-т им. П. О. Сухого ; под общ. ред. А. А. Бойко. – Гомель : ГГТУ им. П. О. Сухого, 2023. – C. 307-310. | ru_RU |
dc.identifier.uri | https://elib.gstu.by/handle/220612/29286 | |
dc.description.abstract | An improved SRGAN image generation model proposed to address the increasing demand
for high-resolution images and the problem of model gradient disappearance due to the excessive
amount of parameters and deeper convolution layers in SRGAN for reconstructing high-resolution
images. First, used a null convolution residual block model in the SRGAN discriminator to alleviate the gradient disappearance; second, the CBAM attention module adds to the discriminator as
a way to extract image features further; finally, adaptive averaging pooling is added to the discriminator to reduce the number of model parameters. The experimental results show that the improved SRGAN reconstructed images are evaluated in the standard datasets AID and RSOD,
reaching 29.58 and 27.37 in peak signal-to-noise ratio (PSNR), respectively, and 0.86 and 0.84
in structural similarity (SSIM), respectively. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | ГГТУ им. П.О. Сухого | ru_RU |
dc.subject | Remote sensing | ru_RU |
dc.subject | SRGAN | ru_RU |
dc.subject | Gradient vanishing | ru_RU |
dc.subject | High resolution | ru_RU |
dc.title | An Improved Super-Resolution Generative Adversarial Network | ru_RU |
dc.type | Article | ru_RU |