Показать сокращенную информацию

dc.contributor.authorОвсянник, А. В.
dc.contributor.authorКлючинский, В. П.
dc.coverage.spatialМинскru_RU
dc.date.accessioned2021-04-29T06:33:27Z
dc.date.available2021-04-29T06:33:27Z
dc.date.issued2021
dc.identifier.citationОвсянник, А. В. Термодинамический анализ и оптимизация параметров вторичного перегрева в турбодетандерных установках на низкокипящих рабочих телах / А. В. Овсянник, В. П. Ключинский // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. – 2021. – Т. 64, № 2. – С. 164–177.ru_RU
dc.identifier.urihttps://elib.gstu.by/handle/220612/24323
dc.description.abstractВ работе представлен термодинамический анализ вторичного перегрева в турбодетандерных установках на низкокипящих рабочих телах. Изучена возможность оптимизации параметров рабочего тела во вторичном пароперегревателе. Исследования проводились для двух характерных турбодетандерных циклов: с теплообменным аппаратом на выходе из турбодетандера, предназначенным для охлаждения перегретого низкокипящего рабочего тела, и без теплообменного аппарата. Для исследуемых схем построены циклы в T–s-координатах. Изучено влияние давления и температуры в промежуточном перегревателе на эксергетический коэффициента полезного действия турбодетандерной установки. Получены зависимости эксергетического КПД и потерь по элементам турбодетандерного цикла при изменении температуры и неизменном давлении рабочего тела в промежуточном пароперегревателе, а также при изменении давления и неизменной температуре. В качестве низкокипящего рабочего тела рассмотрен озонобезопасный фреон R236EA, имеющий «сухую» характеристику линии насыщения, нулевой потенциал разрушения озонового слоя и потенциал глобального потепления, равный 1370. Установлено, что повышение параметров низкокипящего рабочего тела перед турбодетандером низкого давления (независимо от схемы турбодетандерного цикла) не всегда приводит к повышению эксергетического КПД. Так, перегрев рабочего тела при давлении, превышающем критическое, приводит к положительному эксергетическому эффекту. Однако для каждой температуры существует оптимальное давление, при котором КПД будет максимальным. При давлении ниже критического перегрев приводит к снижению эксергетического КПД и максимальный эксергетический эффект достигается при отсутствии вторичного пароперегревателя. При прочих равных условиях турбодетандерный цикл с теплообменным аппаратом более эффективен, чем без него, на всем исследуемом интервале температур и давлений низкокипящего рабочего тела.ru_RU
dc.description.abstractThe paper presents a thermodynamic analysis of secondary overheating in turboexpander plants on low-boiling working fluids. The possibility of optimizing the parameters of the working fluid in a secondary stem superheater has been studied. The research was carried out for two typical turbo-expander cycles: with a heat exchanger at the outlet of the turbo-expander, intended for cooling an overheated low-boiling working fluid, and without a heat exchanger. Cycles in T–s coordinates were constructed for the studied schemes. The influence of pressure and temperature in the intermediate superheater on the exergetic efficiency of the turbo-expander unit was studied. Thus, the dependences of the exergetic efficiency and losses on the elements of the turbo-expander cycle are obtained when the temperature of the working fluid changes and pressure of the working fluid not changes in the intermediate superheater, and when the pressure changes and the temperature does not change. As a low-boiling working fluid, the ozone-safe freon R236EA is considered, which has a “dry” saturation line characteristic, zero ozone layer destruction potential, and a global warming potential equal to 1370. It has been determined that increasing the parameters of the low-boiling working fluid in front of the low-pressure turbo expander (regardless of the scheme of the turbo expander cycle) does not always cause an increase in the exergetic efficiency. Thus, overheating of the working fluid at a pressure exceeding the critical pressure causes a positive exergetic effect, but for each temperature there is an optimal pressure at which the efficiency will be maximum. At a pressure below the critical pressure, overheating leads to a decrease in the exergetic efficiency, and the maximum exergetic effect is achieved in the absence of a secondary steam superheater. All other things being equal, a turbo-expander cycle with a heat exchanger is more efficient than without it over the entire temperature range and pressure of the low-boiling working fluid under study.
dc.language.isoruru_RU
dc.publisherБНТУru_RU
dc.subjectВторичные энергетические ресурсыru_RU
dc.subjectЭнергосбережениеru_RU
dc.subjectСхема турбодетандерного циклаru_RU
dc.subjectПотери эксергииru_RU
dc.subjectТеплообменный аппаратru_RU
dc.subjectSecondary energy resourcesru_RU
dc.subjectEnergy savingru_RU
dc.subjectTurbo-expander cycle schemeru_RU
dc.subjectExergy lossesru_RU
dc.subjectHeat exchangerru_RU
dc.titleТермодинамический анализ и оптимизация параметров вторичного перегрева в турбодетандерных установках на низкокипящих рабочих телахru_RU
dc.title.alternativeThermodynamic Analysis and Optimization of Secondary Overheating Parameters in Turbo-Expander Plants on Low Boiling Working Fluidsru_RU
dc.typeArticleru_RU
dc.identifier.udc658.261:621.56


Файлы, содержащиеся в ресурсе

Thumbnail

Располагается в коллекциях:

Показать сокращенную информацию