Доклады Академии Наук СССР 1947. Том LVI, № 6

ФИЗИЧЕСКАЯ ХИМИЯ

Член-корреспондент АН СССР Г. В. АКИМОВ и А. И. ГОЛУБЕВ *

ИССЛЕДОВАНИЕ РАБОТЫ МИКРОГАЛЬВАНИЧЕСКИХ ЭЛЕМЕНТОВ НА ПОВЕРХНОСТИ КОРРОДИРУЮЩЕГО ЦИНКА

В 1830 г. А. де-ля-Рив (¹) впервые высказал предположение, что скорость коррозии цинка обусловлена работой микроэлементов, образующихся на поверхности цинка за счет его загрязнений. Идея де-ля-Рива, объясняющая процесс коррозии работой микроэлементов, легла в основу современного учения о коррозии металлов. Проверить эту идею непосредственно на микроэлементах до сих пор никому не удавалось.

Нами был разобран вопрос о распределении потенциалов на сложной неоднородной поверхности теоретически (²,³) и экспериментально на модели с короткозамкнутыми, расположенными в одной плоскости электродами (⁴). В последующей работе было проведено исследование распределения потенциалов на микроструктурных составляющих сплава (⁵).

В настоящей работе мы задались целью сравнить электрический и материальный балансы работы микроэлементов и тем самым проверить гипотезу де-ля-Рива не на модели, а на реальном корродирующем металле. Как нами было показано ранее (⁴,⁵), из распределения потенциалов на структурных составляющих сплава и поляризационных кривых для соответствующих структурных составляющих можно получить распределение тока на катодных и анодных участках сплава. Имея кривые распределения тока на поверхности структурных составляющих и зная соотношения площадей катода и анода, можно подсчитать среднюю плотность тока на анодных и катодных участках и сравнить эту величину с плотностью тока, пересчитанной из прямых измерений коррозии данного сплава.

В качестве объекта исследования был выбран сплав цинк — железо-(Fe — 1,5%); остальное Zn). Электролитом служил кислый раствор 0,05 N HCl. В таком растворе процесс коррозии должен итти с водородной деполяризацией. Для получения кривых распределения тока. на структурных составляющих прежде всего необходимо было построить поляризационные кривые этих составляющих. Так как структура нашего сплава состоит из интерметаллического соединения FeZn, и цинка, где цинк является анодной составляющей микроэлемента, а FeZn₇ — катодной составляющей, то необходимо получить. катодную поляризационную кривую в растворе 0,05 N HCl для FeZn_т и анодную поляризационную кривую в том же растворе для цинка. Получить чистое интерметаллическое соединение FeZn, большого объема представляет значительные трудности, и мы вынуждены были снимать поляризационные кривые на отдельных кристаллах FeZn₇. Для этого на шлифе выбирался наиболее крупный кристалл FeZn_т и под микроскопом изолировался от остальной поверхности чистым парафином. В таком виде поверхность кристалла фотографиро-

* В работе принимала участие В. С. Комиссарова.

валась, планиметром измерялась площадь и в паре с пластиной снималась поляризационная кривая. Для сравнения были получены катодные поляризационные кривые на цинке и на чистом железе.

Полученные катодные поляризационные кривые приведены на рис. 1. Поляризационные кривые снимались в открытых сосудах и, следовательно, в растворе имелось некоторое количество растворенного кислорода.

Анодная поляризационная кривая построена нами для чистого цинка (99, 99%), технического цинка и цинка, слегка загрязненного железом. Разницы в поляризационных кривых, в зависимости от чис-

Рис. 1. Катодные поляризационные кривые: 1 — для Fe; 2 для FeZr, и 3 — для Zn в растворе 0,05 N HCl

Рис. 3. Структура сплава Zn + 1,5% Fe. 60 ×

тоты цинка, практически не наблюдается. Большое влияние на крутизну поляризационной кривой оказывает время. Вероятно, с течением времени за счет растравливания изменяется истинная величина поверхности цинка.

На рис. 2 приведена анодная поляризационная кривая для цинка в растворе 0,05 N HCl, полученная в начале опыта. Распределение потенциалов по поверхности структурных составляющих было определено для целого ряда кристаллов FeZn₇ по ранее разработанному нами методу (⁵). В качестве примера на рис. З показана структура сплава; по линии *CD* производилось измерение потенциалов.

В нижней части рис. 4 дана кривая изменения потенциалов на структурных составляющих сплава в 0,05 N HCl по линии CD рис. 3.

Таким образом, имея катодную поляризационную кривую для FeZn₇ (рис. 1), анодную поляризационную кривую для цинка (рис. 2) и кривую распределения потенциалов на структурных составляющих данного сплава (рис. 4), можно построить распределение плотности тока на структурных составляющих сплава (верхняя часть рис. 4).

Для расчета величин тока на анодных и катодных участках необходимо знать соотношения площадей катодной и анодной фаз. 604 Определение площадей производилось нами планиметром на серии фотографий структур сплава. В среднем мы получили площадь катода равную 260/0 и анода 740/0. Зная соотношения площадей катода и анода, можно подсчитать силу тока на анодных и катодных участках. Для нашего случая на 1 см² получилась величина силы тока на аноде 0,50 mA, на катоде 0,36 mA. Теоретически мы должны были бы получить равенство токов. Полученная разница может быть отнесена за счет неточностей при снятии анодной и катодной поляризационных кривых. Далее нами была экспериментально получена кривая: коррозия — время. Из полученных данных о коррозии (по потере в весе) и соотношении площадей можно было рассчитать плотность тока на аноде. Результаты расчета приведены в таблице.

Время в часах от начала опыта	Коррозия по потере веса в г/см ²	Плотность тока, рассчитан- ная из коррозионных опытов	
		$i_A \mathrm{mA}/\mathrm{cm^2}$	<i>i_k</i> mA/cm [*]
$\begin{array}{c} 0 - 0, 5 \\ 0 - 1, 0 \\ 0 - 1, 5 \\ 0 - 3, 0 \\ 0 - 4, 5 \\ 1 - 9, 0 \end{array}$	$\begin{array}{c} 0,0012\\ 0,0010\\ 0,0008\\ 0,0007\\ 0,0006\\ 0,00045 \end{array}$	0,973 0,830 0,649 0,569 0,487 0,366	2,76 2,37 1,82 1,62 1,38 1,05
Средняя тока из прям теских изм труктурны: ощих	плотность мых электри- мерений на х составля-	0,67	1,38

Рис. 4. Распределение потенциалов и плотности тока на поверхности структурных составляющих по линии *CD* рис. 3

Так как опыт с измерением электрических характеристик продолжается обычно 1,5—2 час., то сравнивать плотности тока, полученные прямыми электрическими измерениями, с плотностью тока, высчитанной из результатов коррозионных опытов, следует для этого же времени.

Данные таблицы показывают, что величины плотностей тока, полученные двумя разными путями, достаточно хорошо сходятся между собой.

Полученные результаты дают возможность утверждать, что коррозия исследуемого сплава в кислом растворе полностью обусловлена работой микроэлементов, и величину коррозии можно рассчитать, исходя из данных электрических измерений непосредственно на структурных составляющих сплава.

Таким образом, гипотеза о действии микроэлементов де-ля-Рива, высказанная в 1830 г., получила полное экспериментальное подтверждение в данной работе.

> Институт физической химии Академии Наук СССР и

Поступило 13 II 1947

Всесоюзный научно-исследовательский институт авиационных материалов

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. De-La Rive, Ann. de chem. et de phys., 43, 425 (1830). ² Г. В. Акимов, Тр. 2-й конф. по корр. мет., 1, 25 (1940). ⁸ Г. В. Акимов, Теория и методы исследования коррозии металлов, Изд. АН СССР, 1945, стр. 85—87. ⁴ Г. В. Акимов н А. И. Голубев, ЖФХ, 20, № 3, 303, 309 (1946). ⁵ А. И. Голубеви Г. В. Акимов, ДАН, 52, № 2, 143 (1946).

4 AAH CCCP, T. LVI, № 6