АНАЛИЗ ПРОСТЕЙШИХ АКТИВНЫХ МОСТОВЫХ СХЕМ ДЛЯ РЕЗИСТИВНЫХ ДАТЧИКОВ

В. А. КАРПОВ, А. В. КОВАЛЕВ, О. М. РОСТОКИНА

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Резистивный датчик (РД) является одним из самых распространенных датчиков физических величин, в котором происходит преобразование физической величины в изменение электрического сопротивления. В различных вариантах конструктивного исполнения РД используется различное сочетание резистивных чувствительных элементов (ЧЭ), как правило, один, два, четыре. Кроме того, под действием физической величины изменение электрического сопротивления ЧЭ в этих сочетаниях может иметь как положительный, так и отрицательный знак. В связи с отмеченным принято классифицировать РД со следующими комбинациями ЧЭ [1], [2]:

- -РД с одним ЧЭ:
- РД с двумя ЧЭ, сопротивление которых изменяется одинаково, или РД с двумя синфазными ЧЭ;
- РД с двумя ЧЭ, сопротивление которых изменяется противоположно, или РД с двумя дифференциальными ЧЭ;
 - РД с двумя парами дифференциальных ЧЭ.

Полагают [1]–[3], что начальное сопротивление ЧЭ – R, его изменение под действием той или иной физической величины ΔR , а его относительное изменение $\delta_R = \frac{\Delta R}{R}$.

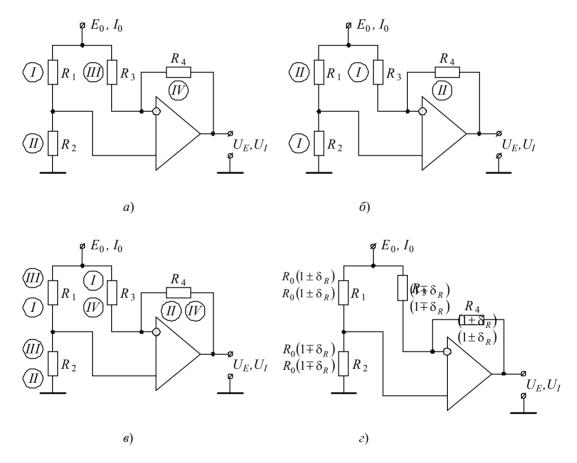
Наиболее простой и изученной схемой для преобразования изменения сопротивления ЧЭ в напряжение является мостовая схема [2]–[4]. Однако мостовым схемам присущ ряд недостатков: низкая чувствительность, значительный уровень синфазной составляющей в выходном напряжении, конечное выходное сопротивление.

Для устранения отмеченных недостатков используются активные мостовые схемы, где в качестве активных элементов применяются операционные усилители (ОУ). К простейшим из этих схем следует отнести схемы с использованием одного ОУ. Это активная мостовая схема с минимальным числом элементов (АМСМЧЭ) и активная мостовая схема повышенной чувствительности (АМСПЧ) [1]–[3], [5], [6]. В перечисленных работах анализируются АМСМЧЭ и АМСПЧ на основе РД с различными комбинациями ЧЭ при питании схем от источника напряжением E_0 . Однако в данных работах неполно представлен анализ различных сочетаний ЧЭ в РД, хотя их число, как будет показано ниже, ограничено, а также отсутствует анализ этих схем при питании их от источника тока I_0 .

Целью данной работы является восполнение отмеченных пробелов и тем самым предоставление возможности рационального выбора активной мостовой схемы в зависимости от конструктивного исполнения РД.

Активная мостовая схема с минимальным числом элементов представлена на рис. 1. Для данной схемы нетрудно получить значение выходного напряжения при питании схемы напряжением E_0 и током I_0 :

$$U_E = -E_0 \frac{R_1 R_4 - R_2 R_3}{R_3 (R_1 + R_2)}; (1)$$


$$U_I = -I_0 \frac{R_1 R_4 - R_2 R_3}{R_1 + R_3} \,. \tag{2}$$

Используя выражения (1), (2), можно получить выражения выходных напряжений для схемы с одним ЧЭ (рис. 1, *a*), представленные в табл. 1. Далее в таблицах известный результат будем обозначать соответствующей ссылкой.

Таблица 1

Выходные напряжения для активной мостовой схемы с минимальным числом элементов и одним ЧЭ

Выходные	Варианты установки ЧЭ			
напряжения	I	II	III	IV
$U_{\scriptscriptstyle E}$	$-\frac{E_0}{2}\frac{\delta_R}{1+\delta_R}$	$\frac{E_0}{2} \frac{\delta_R}{1 + \delta_R}$	$\frac{E_0}{2} \frac{\delta_R}{1 + \delta_R} $ [1], [2]	$-\frac{E_0}{2}\delta_R$ [2], [3], [5]
$U_{\scriptscriptstyle I}$	$-\frac{I_0 R}{2} \frac{\delta_R}{1 + \delta_R}$	$\frac{I_0R}{2}\delta_R$	$\frac{I_0 R}{2} \frac{\delta_R}{1 + \delta_R}$	$-\frac{I_0R}{2}\delta_R$

Puc. 1. Активная мостовая схема с минимальным числом элементов: a – с одним ЧЭ; δ – с двумя синфазными ЧЭ; ϵ – с двумя дифференциальными ЧЭ; ϵ – с двумя парами дифференциальных ЧЭ. (Римскими цифрами отмечены варианты установки ЧЭ в мостовую схему)

Из полученных выражений видно, что при питании схемы напряжением E_0 и током I_0 сопротивление ЧЭ преобразуется линейно, если он расположен в обратной связи ОУ. Однако это не всегда приемлемо, поскольку паразитные параметры линий связи ЧЭ могут привести к потере устойчивости ОУ, что, как правило, требует дополнительных мероприятий по срыву автоколебаний.

Более предпочтительной является схема с питанием от источника тока, в которой ЧЭ расположен во втором плече моста. Достоинство в данном случае заключается в том, что один из зажимов ЧЭ заземлен, а это иногда является конструктивной особенностью РД, преимущественно в автомобильной технике.

Два синфазных ЧЭ в активную мостовую схему с минимальным числом элементов могут быть установлены только двумя способами (рис. $1, \delta$). Используя выражения (1), (2), можно получить выходные напряжения, представленные в табл. 2.

Таблица 2 Выхолные напражения активной мостовой схемы

Privatura namamana	Варианты установки ЧЭ		
Выходные напряжения	I	П	
$U_{\scriptscriptstyle E}$	$E_0 \frac{\delta_R}{1 + \delta_R}$	$-E_0\cdot\delta_R$ [1], [2]	
IJ	$LR \cdot \delta$	$-LR \cdot \delta$	

Выходные напряжения активной мостовой схемы с минимальным числом элементов и синфазным ЧЭ

Из табл. 2 видно, что при питании схемы током I_0 выходное напряжение пропорционально изменению электрического сопротивления ЧЭ. При питании схемы напряжением E_0 выходное напряжение пропорционально изменению сопротивления, когда ЧЭ расположены в первом и четвертом плечах моста, однако один из ЧЭ снова установлен в обратную связь ОУ.

Для дифференциальных ЧЭ (рис. 1, 6) возможны четыре варианта их расположения в схеме. Получая выходные напряжения способом, аналогичным описанному выше, можно получить табл. 3.

Таблица 3

Выходные напряжения активной мостовой схемы
с минимальным числом элементов и дифференциальным ЧЭ

Выходные	Варианты установки ЧЭ			
напряжения	I	II	III	IV
$U_{\scriptscriptstyle E}$	$-E_0 \frac{\delta_R}{1 - 0.5\delta_R}$	$E_0 \frac{\delta_R}{1 + 0.5\delta_R}$	$-E_{\scriptscriptstyle 0}\cdot\delta_{\scriptscriptstyle R}$	$E_0 \frac{\delta_R}{1 + 0.5\delta_R}$
U_{I}	$I_0R \cdot \delta_R$	$I_0R \cdot \delta_R$	$-I_0R\frac{\delta_R}{1+0.5\delta_R}$	$I_0 R \frac{\delta_R}{1 + 0.5\delta_R}$

Из табл. З видно, что с точки зрения линейности преобразования более предпочтительным является питание током I_0 (II и I варианты установки). При питании напряжением E_0 только один вариант — III — позволяет получить линейное преобразование. Для предотвращения установки ЧЭ в обратную связь ОУ следует отдать предпочтение первому варианту с питанием тока I_0 и третьему варианту при питании напряжением E_0 .

Для двух пар дифференциальных ЧЭ существует только один вариант их установки в схему, показанный на рис. 1, ε . Используя выражения (1), (2), нетрудно получить выходные напряжения при питании схемы напряжением E_0 и током I_0 :

$$U_E = 2E_0 \frac{\delta_R}{1 - \delta_R}$$
, [1], [2];

$$U_I = 2I_0 R \cdot \delta_R$$
.

В данном случае также предпочтительнее питать схему от источника тока I_0 .

Общими недостатками активной мостовой схемы с минимальным числом элементов являются: значительное синфазное напряжение для ОУ $(\sim E/2)$ и недостаточная чувствительность.

Для повышения чувствительности, при незначительном усложнении схемы, используют активную мостовую схему повышенной чувствительности [2], [5], представленную на рис. 2. Здесь резисторы R_0 идентичные и, как правило, намного больше сопротивлений R.

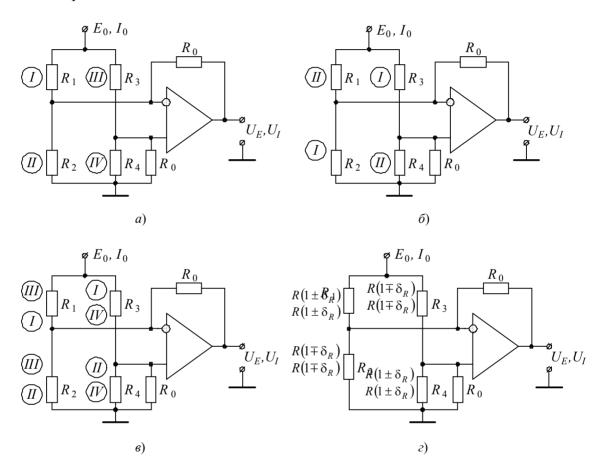


Рис. 2. Активная мостовая схема повышенной чувствительности: a – c одним ЧЭ; δ – c двумя синфазными ЧЭ; ϵ – c двумя дифференциальными ЧЭ; ϵ – c двумя парами дифференциальных ЧЭ. (Римскими цифрами отмечены варианты установки ЧЭ в мостовую схему)

Далее находим выражения для выходного напряжения в общем виде и получим:

$$U_{E} = E_{0} \frac{R_{0}}{R_{1}} \frac{R_{2}R_{4}(R_{1} - R_{3}) + R_{0}(R_{1}R_{4} - R_{2}R_{3})}{R_{2}(R_{0}R_{3} + R_{0}R_{4} + R_{3}R_{4})};$$
(3)

$$U_{I} = I_{0} \frac{R_{0}}{2R_{1}R_{2}} \frac{R_{2}R_{4}(R_{1} - R_{3}) + R_{0}(R_{1}R_{4} - R_{2}R_{3})}{R_{0} + R_{4}}.$$
 (4)

Варианты установки ЧЭ в схему представлены на рис. 2, a. Выходные напряжения для питания схемы напряжением E_0 и током I_0 представлены в табл. 4.

Выходные напряжения активной мостовой схемы повышенной чувствительности с одним ЧЭ

Выходные		Варианты установки ЧЭ		
напряжения	I	II	III	IV
$U_{\scriptscriptstyle E}$	$\frac{E_0 R_0}{R} \frac{\delta_R}{1 + \delta_R}$	$-\frac{E_0 R_0}{R} \frac{\delta_R}{1 + \delta_R}$	$-\frac{E_0 R_0}{R} \frac{\delta_R}{1 + 0.5\delta_R}$	$\frac{E_0 R_0}{R} \frac{\delta_R}{1 + 0.5\delta_R} [1], [2]$
U_{I}	$\frac{I_0 R_0 \cdot \delta_R}{1 + 0.5\delta_R}$	$\frac{I_0 R_0 \cdot R_0}{R_0 + R} \frac{\delta_R}{1 + \delta_R}$	$-\frac{I_0 R_0 \cdot \delta_R}{1 + 0.5 \delta_R}$	$\frac{I_0 R_0 \cdot R_0}{R_0 + R} \frac{\delta_R}{1 + \frac{R}{R_0 + R}} \delta_R$

В полученных выражениях нет линейности между изменением сопротивления ЧЭ и выходного напряжения. Поскольку схема является схемой повышенной чувствительности, то, как правило, $R_0 >> R$. Например, пусть $E_0 = 4$ В, $I_0 = 20$ мА, R = 200 Ом, $\delta_R = 10^{-2}$, а выходное напряжение пусть будет равно 4 В. Тогда из

$$U_E = E_0 \frac{R_0}{R} \delta_R$$

можно получить значение сопротивления R_0 :

$$R_0 = \frac{U_E \cdot R}{E_0 \delta_B} = \frac{4 \cdot 200}{4 \cdot 10^{-2}} = 2 \cdot 10^4 = 20 \text{ kOm},$$

откуда видно, что $R/R_0 = 10^{-2}$.

Из табл. 4 видно, что при установке ЧЭ в четвертое плечо и при питании его током $I_{\rm 0}$, имеем:

$$U_I = I_0 R_0 \, \frac{R_0}{R_0 + R} \, \frac{\delta_R}{1 + \frac{R}{R_0 + R}} \approx I_0 R_0 \, \frac{\delta_R}{1 + 10^{-2} \cdot \delta_R} \, ,$$

т. е. нелинейность преобразования уменьшена в сто раз, и чем выше чувствительность схемы, тем меньше оказывает влияние нелинейность. Из изложенного выше следует, что данную схему целесообразно применять для ЧЭ типа тензорезистора, когда $\delta_R << 1$.

Синфазные ЧЭ в активной мостовой схеме можно расположить двумя способами (рис. 2, δ). С использованием выражений (3), (4) нетрудно получить ее выходные напряжения при питании напряжением и током, которые сведены в табл. 5.

Таблица 5

Выходные напряжения активной мостовой схемы повышенной чувствительности с синфазным ЧЭ

Ви уодин на папражания	Варианты установки ЧЭ		
Выходные напряжения	I	II	
$U_{\scriptscriptstyle E}$	$-E_0 \frac{R_0}{R} \frac{\delta_R}{1+\delta_R}$	$E_0 \frac{R_0}{R} \frac{\delta_R}{1 + \delta_R}$ [1], [2]	
U_{I}	$I_0 R_0 (1 + \delta_R) \delta_R$	$I_0 R_0 (1 - 0.5\delta_R) \delta_R$	

Последняя строка табл. 5 получена при условии, что $R_0 >> R$ (как и в рассмотренном выше примере).

Из табл. 5 видно, что схема пригодна для преобразования небольших относительных изменений δ_R ЧЭ.

Дифференциальные ЧЭ в активной мостовой схеме можно расположить четырьмя способами (рис. 2, ϵ). Используя выражения (3), (4) и полагая, что $R_0 >> R$, можно получить выражения для выходных напряжений, которые сведены в табл. 6.

Таблица 6

Выходные напряжения активной мостовой схемы повышенной чувствительности дифференциальным ЧЭ

Выходные напряжения	Варианты установки ЧЭ			
папряжения	I	II	III	IV
$U_{\scriptscriptstyle E}$	$E_0 \frac{R_0}{R} \frac{\delta_R}{1 + \delta_R}$	$-E_0 \frac{R_0}{R} \frac{\delta_R}{1 + \delta_R}$	$E_0 \frac{R_0}{R} \left(1 - 0.5 \frac{R}{R_0} \delta_R \right) \delta_R$	$-E_0 \frac{R_0}{R} \left(1 - 0.5 \frac{R}{R_0} \delta_R \right) \delta_R$
U_{I}	$I_0 R_0 \frac{\delta_R}{1 + \delta_R}$	$-I_0 R_0 \frac{\delta_R}{1+\delta_R}$	$I_0 R_0 \left(1 - 0.5 \frac{R}{R_0} \delta_R \right) \delta_R$	$-I_0 R_0 \left(1 - 0.5 \frac{R}{R_0} \delta_R\right) \delta_R$

Из табл. 6 видно, что варианты установки III, IV более предпочтительны, поскольку $R/R_0 << 1$ и нелинейность преобразования существенно ниже.

Две пары дифференциальных ЧЭ можно установить в мостовую схему (рис. 2, ε). Выходное напряжение схемы, с учетом выражений (3), (4), имеет вид (с точностью до δ_R^2):

$$U_E = E_0 \frac{2R_0}{R} \delta_R$$
 [1], [2];

$$U_I = 2I_0 R_0 \frac{\delta_R}{1 + \frac{R}{R_0} \delta_R} \cdot$$

Полученные формулы показывают, что выходные выражения при использовании двух пар ЧЭ линейно зависимы от относительного изменения сопротивления ЧЭ $(R/R_0 << 1)$.

В отличие от мостовой схемы и активной мостовой схемы с минимальным числом элементов в рассмотренной схеме повышена чувствительность, определяемая отношением R/R_0 и числом ЧЭ.

K недостаткам схемы следует отнести значительный уровень синфазной составляющей для используемого ОУ, высокие требования к согласованности резисторов R_0 и сложность регулировки коэффициента усиления — необходимо изменять одновременно два сопротивления R_0 .

Полученные результаты (табл. 1–6) представляют все варианты преобразования изменения омического сопротивления РД в выходное напряжение для двух простейших активных мостовых схем АМСМЧЭ и АМСПЧ при питании их как от источника напряжения, так и от источника тока, и позволяют произвести рациональный выбор нормирующей схемы в зависимости от конструктивного устройства резистивного датчика.

Литература

1. Kester, W. Editor, 1992 Amplifier Applications Guide, Section 2, 3.

- 2. Кестер, У. Методы практического конструирования при нормировании сигналов с датчиков. Раздел 2: мостовые схемы / У. Кестер, 2006. URL: http://www.autexspb.da.ru. Дата обращения: 08.11.2011 г.
- 3. Волович, Г. И. Схемотехника аналоговых и аналого-цифровых электронных устройств / Г. И. Волович. М. : ДОДЕКА-ХХІ, 2007. С. 147–149.
- 4. Левшина, Е. С. Электрические измерения физических величин. Измерительные преобразователи / Е. С. Левшина, П. В. Новицкий. Л. : Энергоатомиздат, 1983. 370 с.
- 5. Щербаков, В. И. Электрические схемы на операционных усилителях : справочник / В. И. Щербаков, Г. И. Грездов. К. : Техника, 1983. 213 с.
- 6. Гутников, В. С. Интегральная электроника в измерительных устройствах / В. С. Гутников. Л. : Энергия, 1980. 248 с.

Получено 29.04.2011 г.