МЕТАСТАБИЛЬНАЯ ФАЗА ЦИНКА В ФОЛЬГАХ, ПОЛУЧЕННЫХ СВЕРХБЫСТРОЙ ЗАКАЛКОЙ ИЗ РАСПЛАВА

В. В. ЛОЗЕНКО, В. Г. ШЕПЕЛЕВИЧ

Белорусский государственный университет, г. Минск

Введение

Одним из наиболее перспективных направлений современного материаловедения является использование сверхвысоких скоростей охлаждения расплава при затвердевании. Сверхбыстрая закалка приводит к улучшению стандартных сплавов благодаря более однородному распределению легирующих элементов, повышению их растворимости в твердом растворе, уменьшению или устранению микросегрегаций, уменьшению размера зерна, а также образованию новых метастабильных фаз [1]–[3].

Особый интерес представляет собой изучение быстрозатвердевших цинковых сплавов, обусловленный их широким использованием в различных областях промышленности и техники [1]–[5]. Аномалии свойств цинка, известные еще в 60-х годах прошлого века, служили основанием для высказываний в пользу его полиформизма [6], [7]. Однако рядом последующих работ полиформизм цинка был отвергнут, и в настоящее время считается, что цинк является мономорфным металлом и при комнатной температуре существует только в одной кристаллической модификации [4], [5].

Несмотря на большой интерес к быстрозатвердевшим сплавам, на сегодняшний день вопрос о влиянии сверхбыстрой закалки на цинковые сплавы практически не изучен [8]–[10]. В связи с этим целью настоящей работы являлось исследование фазового состава быстрозатвердевших фольг цинка и его сплавов.

Материалы и методика эксперимента

Цинк, медь, олово, германий, магний и кадмий, используемые для приготовления сплавов, имели чистоту не менее 99,99 %. Сплавы систем Zn–Cd, Zn–Ge, Zn–Cu, Zn–Sn и Zn–Mg, содержащие до 2 ат. % легирующего компонента, изготовлены сплавлением компонентов в кварцевых ампулах.

Исследуемые в работе фольги цинка были получены сверхбыстрой закалкой из жидкой фазы методом центробежной закалки, при которой капля расплава (~ 0,2 г) инжектируется на внутреннюю полированную поверхность медного вращающего цилиндра. Частота цилиндра изменялась от 10 до 70 об/с. Толщина используемых фольг находилась в интервале 30–80 мкм. Скорость охлаждения расплава, как показал расчет [11], была не менее 10⁶ K/с.

Рентгенофазовый проводился дифрактометре ДРОН-3 анализ на в монохроматизированном кобальтовом излучениях. Средний медном И размер кристаллитов определялся на основе полуширины дифракционной линии В по формуле Селякова [12]:

$$L = \frac{\lambda}{B\cos\theta},$$

где λ – длина волны рентгеновского излучения; θ – угловое положение дифракционной линии.

Изохронный отжиг исследуемых фольг проводился последовательно от комнатной температуры и до температуры плавления с интервалом в 20 °C и выдержкой 20 мин для

каждой температуры. Изотермический отжиг фольг цинка и его сплавов проводился при температурах, близких к температуре плавления (380 °C).

Результаты и их обсуждение

Рентгеноструктурый анализ фольг цинка, полученных сверхбыстрой закалкой из расплава, показал, что интенсивность дифракционной линии 0002 в несколько раз превышает интенсивность остальных дифракционных линий. Съемка при более высокой чувствительности позволила обнаружить в них дополнительные дифракционные отражения, не принадлежащие равновесной фазе цинка (рис. 1). В массивных и отожженных слитках цинка таких рефлексов не наблюдалось. Следовательно, в быстрозатвердевших фольгах цинка помимо равновесной фазы существует метастабильная фаза Zn'.

Рис. 1. Участок рентгенограммы быстрозатвердевших фольг цинка, полученной в кобальтовом излучении

Угловое положение дифракционных линий, а также соответствующие величины межплоскостного расстояния для фазы Zn' представлены в таблице. Средний размер частиц данной фазы, рассчитанный по формуле Селякова, составляет примерно 0,1 мкм. Расчет показал, что структура кристаллической решетки Zn' также как и для равновесной фазы Zn, гексагональная плотноупакованная. Параметры решетки метастабильной фазы Zn' составляют a = 2,62 Å, c = 5,46 Å, при этом отношение c/a = 2,08 превышает равновесное значение данного отношения для цинка, равного 1,85.

Дифракционные отражения, не принадлежащие равновесной фазе цинка, в быстрозакаленных лентах цинка наблюдались и ранее [13]. Наряду с отражениями от плоскостей, соответствующих равновесной ГПУ структуре цинка, появляются отражения от плоскостей другой ГПУ структуры, но с меньшим параметром *с*. Кроме того, на рентгенограммах наблюдаются отражения, соответствующих и ГЦК структуре. Для объяснения данного явления были проведены рентгенофазовые исследования расплавленного цинка [14], которые показали, что в жидком цинке имеются микрообласти с упаковкой атомов, отличающихся от упаковки в кристаллической решетке, и сверхбыстрая закалка из расплава способствуют образованию из них зародышей новой фазы.

Угловое положение дифракционных линий, межплоскостные расстояния и индексы кристаллографических плоскостей метастабильной фазы Zn' (для медного излучения)

2 0, град.	<i>d</i> , Å	$hk\overline{(h+k)}l$
32,8	2,73	0002
39,6	2,27	$10\overline{1}0$
43,4	2,08	1011
65,4	1,43	1013
68,8	1,37	0004
71,7	1,32	11 20
81,7	1,18	11 22
87,9	1,11	$20\overline{\overline{2}}1$

Результаты исследований показали, что метастабильная фаза Zn' в быстрозатвердевших фольгах цинка наблюдается и в фольгах бинарных сплавов цинка с Cu, Ge, Cd, Sn, Mg. Увеличение скорости охлаждения расплава при повышении частоты вращения цилиндра от 10 до 70 об/с не изменяет величину интенсивности дифракционных отражений, принадлежащих метастабильной фазе цинка (рис. 2).

Рис. 2. Изменение интенсивности дифракционных линий (0002) метастабильной фазы *I* относительно стабильной *I* при увеличении частоты вращения цилиндра

Исследовано влияние термической обработки на фазовый состав исследуемых быстрозатвердевших фольг. Так, их изохронный отжиг вплоть до температуры плавления не привел к исчезновению метастабильной фазы Zn'. Изотермический отжиг фольг цинка и его сплавов при температурах, близких к температуре плавления (380 °C), привел только к уменьшению интенсивностей дифракционных отражений, принадлежащих новой фазе (рис. 3). И только при расплавлении и последующем затвердевание фольг с малыми скоростями охлаждения (~1 K/c) данные рефлексы исчезают.

Рис. 3. Изменение интенсивности дифракционных линий (0002) в результате изотермического отжига (380 °C) в быстрозатвердевших фольгах цинка и его сплавов: ¬□¬ – Zn; ¬О¬ – Zn-0,5 ат. % Ge; ¬Δ¬ Zn-0,5 ат. % Cu

Заключение

Применение технологии сверхбыстрой закалки из расплава приводит к образованию в быстрозатвердевших фольгах цинка метастабильной фазы, имеющей гексагональную решетку с параметрами a = 2,62 Å, c = 5,46 Å и c/a = 2,08. Увеличение скорости охлаждения расплава при повышении частоты вращения цилиндра не изменяет величину интенсивности дифракционных отражений, принадлежащих метастабильной фазе цинка. Термическая обработка быстрозатвердевших фольг цинка и его сплавов при температурах, близких к температуре плавления, приводит к уменьшению интенсивностей дифракционных отражений, принадлежащих метастабильной фазе.

Литература

- 1. Высокоскоростное затвердевание расплава / В. А. Васильев [и др.]; под ред. Б. С. Митина. Москва : Интерметинжиниринг, 1998. 400 с.
- 2. Сверхбыстрая закалка жидких сплавов / под ред. Г. Германа. Москва : Металлургия, 1986. 373 с.
- Калиниченко, А. С. Управляемое направленное затвердевание и лазерная обработка: теория и практика / А. С. Калиниченко, Г. В. Бергманн. – Минск : Техно-принт, 2001. – 367 с.
- 4. Кечин, В. А. Цинковые сплавы / В. А. Кечин, Е. Я. Люблинский. Москва : Металлургия, 1986. 247 с.
- 5. Мальцев, М. В. Металлография промышленных цветных металлов и сплавов / М. В. Мальцев. Москва : Металлургия, 1970. 364 с.
- 6. Пресняков, А. А. Об аномалиях свойств цинка / А. А. Пресняков, Л. И. Даутова // Докл. АН СССР. – 1960. – Т. 132, № 2. – С. 333–335.
- 7. Пресняков, А. А. К вопросу о полиформизме цинка / А. А. Пресняков, Л. И. Даутова // Труды ин-та ядерной физики АН КазССР. 1961. Т. 4. С. 42–47.
- Akdeniz M. V., Wood J. V. Effect of melt superheat on the geometry of melt spun pure zinc ribbon // Scripta Metallurgica et Materialia. – 1995. – Vol. 32, № 9. – P. 1471–1475.
- Формирование структуры затвердевания при закалке расплавов чистых металлов на вращающемся теплоприемнике / Б. С. Митин [и др.] // Физика металлов и металловедение. – 1999. – Т. 87, № 3. – С. 53–58.

- 10. Xu W., Feng Y. P., Li Y., Zhang G. D., Li Z. Y. Rapid solidification behavior of Zn-rich Zn-Ag peritectic alloys // Acta Mater. – 2002. – V. 50 – P. 183–193.
- 11. Мирошниченко, И. С. Закалка из жидкого состояния / И. С. Мирошниченко. Москва : Металлургия, 1982. 168 с.
- 12. Иверонова, В. И. Теория рассеяния рентгеновских лучей / В. И. Иверонова, / Г. П. Ревкевич. Москва : МГУ, 1978. 277 с.
- 13. Романова, А. В. Кристаллическая структура цинка, закаленного из жидкого состояния / А. В. Романова, В. В. Бухаленко // ФММ. 1973. Т. 35, № 6. С. 1313–1314.
- 14. Романова, А. В. Структура и электропроводность расплавленного цинка / А. В. Романова, Э. А. Павлова // Изв. АН СССР. Металлы. 1974. № 2. С. 61–65.

Получено 19.10.2006 г.