

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Обработка материалов давлением»

ФРИКЦИОННЫЕ МУФТЫ ВКЛЮЧЕНИЯ И ТОРМОЗА. КОНСТРУИРОВАНИЕ И РАСЧЕТ

методические указания к курсовому проекту по дисциплине «Теория, расчеты и конструкции прессово-штамповочного оборудования» для студентов специальностей 1-36 01 05 «Машины и технология обработки материалов давлением» и 1-36 20 02 «Упаковочное производство (по направлениям)» дневной и заочной форм обучения

Электронный аналог печатного издания

УДК 621.77.06(075.8) ББК 34.623я73 Ф88

Рекомендовано к изданию научно-методическим советом механико-технологического факультета ГГТУ им. П. О. Сухого (протокол № 8 от 27.03.2006 г.)

Автор-составитель: B. Φ . Eуренков Рецензент: канд. техн. наук, доц., зав. каф. «Детали машин» ГГТУ им. П. О. Сухого A. T. Eельский

Фрикционные муфты включения и тормоза. Конструирование и расчет : метод. указания к курсовому проекту по дисциплине «Теория, расчеты и конструкции прессовоштамповочного оборудования» для студентов специальностей 1-36 01 05 «Машины и технология обработки материалов давлением» и 1-36 20 02 «Упаковочное производство (по направлениям)» днев. и заоч. форм обучения / авт.-сост. В. Ф. Буренков. – Гомель : ГГТУ им. П. О. Сухого, 2007. – 41 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Асгоbat Reader. – Режим доступа: http://gstu.local/lib. – Загл. с титул. экрана.

ISBN 978-985-420-590-8.

Содержатся рекомендации по расчету и конструированию фрикционных муфт включения и тормозов кривовошипных машин.

Для студентов технических специальностей дневной и заочной форм обучения.

УДК 621.77.06(075.8) ББК 34.623я73

ISBN 978-985-420-590-8

© Буренков В. Ф., составление, 2007

© Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2007

1. НАЗНАЧЕНИЕ МУФТ И ТОРМОЗОВ

В системе привода кривошипных машин предусматриваются сцепные муфты и тормоза, позволяющие передавать вращающий момент к главному валу, а в нужный момент производить отключение привода и остановку исполнительного органа (ползуна) без выключения электродвигателя. Включение, выключение и взаимное блокирование муфты и тормоза осуществляется с помощью системы управления. Муфта, тормоз и система управления образуют так называемую систему включения машины, работа которой требует высокой надежности и практической безотказности. Система включения должна допускать работу машины как последовательными, так и одиночными ходами, для облегчения наладки желателен толчковый режим, характерный кратковременным перемещением ползуна и остановкой его в требуемом положении.

Интенсивный режим работы системы включения, связанный с большим числом включений в единицу времени, ограниченным временем включения и выключения, требует высокой износостойкости и долговечности узлов и деталей муфты и тормоза. В наиболее тяжелых условиях работает главный элемент системы включения — муфта.

2. ВЫБОР ТИПА МУФТЫ И ТОРМОЗА И ИХ РАСПОЛОЖЕНИЕ В ПРИВОДЕ

При проектировании кривошипных машин тип муфты (тормоза) и их расположение в приводе определяется, прежде всего, силовыми параметрами – передача требуемого вращающего момента или создание момента торможения и общей компоновкой привода.

Необходимо учитывать, что при расположении муфты (тормоза) на главном валу увеличивается вращающий момент (момент торможения), однако значительно снижается окружная скорость на поверхностях трения, что приводит к уменьшению нагрева и увеличению долговечности трущихся поверхностей. Поэтому, несмотря на увеличение габаритов муфты (тормоза), ее веса и стоимости, снижение расходов на ремонт оправдывает такую установку в приводе, т. е. на главном валу кривошипной машины [3].

В настоящее время кривошипные машины достаточно быстроходные и при работе на одиночных ходах увеличивается число возможных включений. В этих условиях фрикционные муфты, особенно многодисковые, работают ненадежно [3]. Для улучшения работы муфт и тормозов их устанавливают на менее быстроходных валах. Расположение осуществляется с разных сторон на консольных участках вала с использованием однодисковых муфт и тормозов с раздельным управлением.

Консольная установка однодисковых муфт и тормозов со вставными фрикционными блоками на главном валу осуществляется в кривошипных горячештамповочных прессах.

Таким образом, при проектировании муфт и тормозов предпочтительна их установка на главном валу, хотя имеются конструкции кривошипных машин с иной компоновкой системы включения.

При выборе типа муфты (тормоза) необходимо учитывать их силовые параметры, достоинства конструкции, а также опыт эксплуатации хорошо работающих машин.

3. КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ МУФТ ВКЛЮЧЕНИЯ И ТОРМОЗОВ КРИВОШИПНЫХ МАШИН

Особенностью муфт включения в кривошипных прессах является передача больших вращающих моментов (до $1\cdot 10^6$ Hm), разгон и остановка больших масс в короткие промежутки времени (менее 0,1 c), работа в режиме частых включений и выключений. Это обуславливает большие габаритные размеры муфт и требует обеспечения высокой долговечности и износостойкости их рабочих деталей.

В кривошипных прессах, в основном, применяются жесткие и фрикционные муфты включения.

В жестких муфтах в качестве сцепного элемента используется жесткая деталь — палец, кулачок или поворотная шпонка. Кулачковые и пальцевые муфты оказались практически неработоспособными на прессах, особенно при интенсивном их использовании и повышенном числе ходов [1]. Муфты с поворотной шпонкой применяют на прессах небольших усилий — до 160 кН при большом числе ходов — свыше 80 мин⁻¹. Жесткие муфты компактны, малоинерционные, не нагреваются при эксплуатации, обычно они располагаются на главных валах.

В прессостроении наиболее распространены фрикционные дисковые муфты, которые по конструктивному исполнению бывают одно— и многодисковые. В настоящее время широкое применение получили однодисковые муфты с фрикционными вставками (блоками), устанавливаемые консольно для удобства обслуживания и ремонта. При этом с тормозом они блокируются, в основном, посредством системы управления. Большие передаваемые моменты и необходимость быстродействия заставляют применять пневматические и гидравлические силовые цилиндры для управления работой муфты или тормоза. Наибольшее применение нашли муфты с пневматическим управлением. Конструкции однодисковых муфт и их характеристики приведены в Приложениях.

Многодисковые муфты с фрикционными накладками позволяют обеспечить передачу больших вращающих моментов. Их конструкции, геометрические параметры и технические данные приведены в Приложении 1.

Расположение муфты на валу может быть консольным или межопорным. При межопорном расположении блокировка работы муфты и тормоза осуществляется механически (тягами, связывающими соответствующие диски муфты и тормоза) и пневматически. Основной недостаток этих конструкций — большая инерционность ведомых частей и затрудненный подвод сжатого воздуха (необходимо сверлить вал и уплотнять стык между поверхностью вала и вращающейся на нем втулкой).

Достоинство таких муфт – четкая блокировка и компактность, однако в современных прессах эти муфты применяются редко и только тогда, когда прессы имеют маховики больших размеров [2].

В конструкции кривошипных машин наибольшее распространение получили дисковые и ленточные тормоза периодического действия. Ленточные тормоза применяются при частоте ходов пресса не более $120\,$ мин $^{-1}\,$ и тормозном моменте до $2\cdot 10^4\,$ Нм. Они просты в настройке, имеют хорошую теплоотдачу, однако, большой момент инерции тормозного барабана и ненадежность гибкого элемента (стальной ленты) ограничивает их применение [2].

Наиболее совершенны и надежны в работе дисковые фрикционные тормоза, устанавливаемые консольно на одном из приводных валов. Дисковые тормоза имеют значительно большую поверхность трения и, следовательно, могут создать больший момент торможения при одинаковых габаритных размерах и меньших инерционных массах. Для улучшения условий охлаждения в дисковых тормозах может применяться оребрение корпуса, специальные вентилирующие каналы или воздушные вентиляторы [1].

По конструкции дисковые тормоза похожи на дисковые муфты, с той разницей, что вращающиеся фрикционные элементы при торможении сцепляются с неподвижными частями. При этом торможение должно осуществляться энергетически автономным элементом (пружинами), исходя из требований безопасности.

Фрикционные дисковые муфты и тормоза могут изготавливаться совмещенными в одном корпусе с «жесткой» блокировкой, т. е. когда при подаче сжатого воздуха ведомые диски прижимаются к маховику — обеспечивается передача вращения главному валу, а при выпуске воздуха пружины прижимают эти диски к неподвижным, соединенными со станиной пресса, при этом осуществляется процесс торможения.

Конструкции, описание работы и технические данные муфт, тормозов и совмещенных муфт-тормозов приведены в Приложении 2.

4. ВЫБОР И РАСЧЕТ ФРИКЦИОННЫХ МУФТ

Исходным для подбора муфты является номинальный вращающий момент M_{κ}^{H} на главном валу, который приводится к валу, на котором расположена муфта. Расчетный момент муфты M_{κ} [Hм] определяется из выражения:

$$\mathbf{M}_{_{\mathbf{M}}} = \beta \cdot \mathbf{M}_{_{\mathbf{K}}}^{_{\mathbf{H}}} / (U_{_{\mathbf{M}}} \cdot \mathbf{3}_{_{\mathbf{M}}}), \qquad (1)$$

где β – коэффициент запаса, учитывающий инерционность ведомых частей, динамичность нагрузки и колебания коэффициента трения, выбирается по табл. 4.1; $U_{\rm M}$, $\eta_{\rm M}$ – соответственно передаточное число и КПД передач от вала муфт к главному валу (кривошипу).

от типа кривошипной машины

Таблица 4.1 Зависимость коэффициента запаса β

Тип кривошипной машины	β
Листоштамповочные, вырубные, просечные, обрезные прессы усилием до1000 кН	1,0
То же усилием свыше 1000 кН	1,1
Вытяжные прессы	1,1÷1,2
Кривошипные горячештамповочные прессы (КГШП)	1,2÷1,3
Горизонтально-ковочные машины (ГКМ)	1,2÷1,3
Ножницы	1,2÷1,35

Момент $M_{\kappa}^{\scriptscriptstyle H}$ рассчитывается по формуле:

$$\mathbf{M}_{\kappa}^{\mathrm{H}} = P_{\mathrm{H}} \cdot m_{\kappa} \; [\mathrm{HM}], \tag{2}$$

где $P_{\rm H}$ – номинальное усилие, [H]; $m_{\rm K}$ – приведенное плечо сил, [м];

$$m_{\nu} = m_{\nu}^{\mathrm{H}} + m_{\nu}^{f} \,, \tag{3}$$

где m_{κ}^{μ} — приведенное плечо сил для идеального механизма; m_{κ}^{f} — приведенное плечо сил трения.

Для центрального кривошипно-ползунного механизма m_{κ}^{μ} определяется при номинальном угле поворота кривошипа α_{μ} из выражения:

$$m_{\kappa}^{\mu} = R(\operatorname{Sin}\delta + \frac{\lambda}{2}\operatorname{Sin}2\alpha),$$
 (4)

где R — радиус кривошипа; α — угол поворота кривошипа; $\lambda = \frac{R}{L} \; (L$ — длина шатуна) — коэффициент шатуна.

R определяется из задания на проектирование машины, $\alpha_{_{\rm H}}$ выбирается из табл. 4.2, а λ из табл. 4.3 в зависимости от типа пресса.

Таблица 4.2 Рекомендуемые номинальные углы $\alpha_{_H}$ кривошипных прессов, град

	Ход норм	мальный	Ход увел	иченный					
			оивода						
Тип пресса	Односторонний	Двухсторонний	Односторонний	Двухсторонний					
Простого действия:	2	0 ~ ~							
а) кривошипные	30 – без зубчатого привода 45 – с зубчатым приводом								
одностоечные		<u> </u>							
б) однокривошипные	20	30	10	20					
в) двухкривошипные	20	30	10	20					
г) четырехкривошипные	-	20	_	15					
д) обрезные	25	_	_	_					
Двойного действия:	1.0	20							
а) однокривошипные	10	20	_	_					
б) двухкривошипные	-	20	_	_					
в) однокривошипные с кулачковым приводом наружного ползуна	_	-	10	-					
Простого действия с шестернеэксцентриковым приводом:									
усилием до 6,3 Мн	15	30	_	20					
усилием 6,3 Мн и выше	_	25	_	15					
Кривошипные горячештамповочные: усилием до 40 Мн	3								
усилием 40 Мн и выше	5	_	_	_					
Чеканочные кривошипно-коленные	-	60		50					

Значение коэффициента шатуна λ

Тип пресса	λ
Листоштамповочные универсальные:	
– с нормальным ходом	0,08-0,14
- с увеличенным ходом	0,15–0,20
Листоштамповочные: для вытяжных работ	0,18-0,30
с плунжерной подвеской	0,30-0,45
для наружных ползунов: без плунжеров	0,25–0,4
с плунжерами	0,60–0,70
Автоматы с нижним приводом	0,05-0,08
Автоматы многопозиционные	0,06-0,18
Горячештамповочные для объемной штамповки	0,15-0,20
ГКМ	0,25-0,30
Чеканочные	0,12–0,16
Автоматы холодновысадочные	0,10–0,20
Ножницы листовые с наклонным ножом	0,08-0,13

Приведенное плечо сил трения вычисляется по формуле:

$$m_{\kappa}^{f} = f[(1+\lambda)r_{A} + \lambda r_{B} + r_{O}], \qquad (5)$$

где f — коэффициент трения в шарнирах, принимаемый 0,06 при пластичной смазке и 0,04 при жидкой циркуляционной смазке шарниров и опор главного вала; $r_{\scriptscriptstyle A}$, $r_{\scriptscriptstyle B}$, $r_{\scriptscriptstyle O}$ — радиусы шарниров соответственно отверстия в верхней головке шатуна (соединение с главным валом), нижней головки шатуна (соединение шатуна с ползуном) и опор главного вала (кривошипа).

Таким образом производится расчет номинального момента на главном валу; некоторые авторы [2] рекомендуют вести расчет по максимальному моменту.

Передаточное число $U_{_{\rm M}}$ и КПД передач $\eta_{_{\rm M}}$, входящих в формулу (1), определяется исходя из кинематической схемы главного привода с учетом места расположения муфты.

Если муфта находится на главном валу $U_{_{\rm M}}$ и $\eta_{_{\rm M}}$ равен единице, т. е. в формуле (1) они не учитываются.

По рассчитанной величине $M_{\scriptscriptstyle M}$ подбирается муфта, у которой передаваемый момент больше расчетного.

Момент, передаваемый однодисковой муфтой со вставками:

$$\mathbf{M}_{_{\mathbf{M}}} = 2 \cdot f \cdot q_{_{\mathbf{M}}} \cdot R_{_{\mathbf{C}\mathbf{D}}} \cdot n \cdot F_{_{\mathbf{BC}}}, \tag{6}$$

где f — коэффициент трения, принимаемый равным 0,35; $q_{\rm M}$ — удельное усилие (давление) на поверхности трения, составляющее 1,5÷2,2 МПа; $R_{\rm cp}$ — средний радиус (радиус, проходящий через центр тяжести вставок); n — число вставок; $F_{\rm BC}$ — площадь рабочей поверхности одной вставки.

Для муфты с обкладками:

$$\mathbf{M}_{\scriptscriptstyle \mathrm{M}} = \frac{2}{3} \cdot \pi \cdot q_{\scriptscriptstyle \mathrm{M}} \cdot f \cdot m \cdot \left(R_2^3 - R_1^3 \right), \tag{7}$$

где $q_{\rm M}=0,4\div0,6$ МПа при частоте вращения вала муфты менее $180\,{\rm мин}^{-1}$, при большей частоте вращения $q_{\rm M}=0,3$ МПа; f=0,35; m- число поверхностей трения; R_2 и R_1- наружный и внутренний радиусы рабочих поверхностей дисков.

При выборе нормализованных муфт необходимо, исходя из передаваемого ими момента по формулам (6) или (7) (в зависимости от типа муфты), рассчитать величину давления на поверхностях трения $q_{\scriptscriptstyle \rm M}$, которое обеспечивается давлением воздуха p, осуществляющего прижим фрикционных вставок или накладок.

Данные по геометрическим размерам вставок и дисков приведены в Приложении 5. Рекомендации по конструированию дисковых муфт с накладками [1]: Внутренний радиус

$$R_1 = c \cdot d$$
,

где $c=1,6\div1,8;$ d — диаметр вала, на котором монтируется муфта. Наружный радиус $R_2=(1,4\div2,0)$ R_1 . Толщина дисков $\delta=0,1(R_2-R_1)$.

При включении муфты часть затраченной энергии превращается в тепловую энергию, что приводит к нагреву деталей и, в частности, фрикционных вставок или накладок. Нагрев до высоких температур изменяет физическую структуру материала [2], при этом ухудшаются фрикционные свойства, снижается коэффициент трения, повышается износ поверхностей трения, что приводит к преждевременному выходу их из строя. При большом числе включений необходимо проверять устойчивость теплового баланса муфты и температуру ее нагрева. Методы расчета на нагрев связаны с условиями теплообмена, которые существенно отличаются друг от друга при различных конструкциях муфт. В прессостроении в качестве косвенного теплового расчета используется расчет на работоспособность по показателю износа, который рассчитывается по формуле:

$$K_{_{\text{ИЗH}}} = a_{_{\text{M}}} \frac{I_{\text{BM}} \omega_{_{\text{M}}}^2}{2F} p \cdot n_{_{\text{H}}}, \qquad (8)$$

где $a_{_{\rm M}}$ — коэффициент, для муфт $a_{_{\rm M}}=1{,}05\div1{,}15;$ $I_{\rm BM}$ — момент инерции ведомых частей, приведенный к валу муфты, кг · м²; $\omega_{_{\rm M}}$ — угловая скорость муфты, с¹; p — коэффициент использования числа ходов; $n_{_{\rm H}}$ — непрерывное число ходов пресса, мин¹; F — суммарная площадь поверхностей трения, м².

Момент инерции ведомых частей, приведенный к валу муфты $I_{\rm BM}$, определяется с учетом кинематической схемы главного привода и места расположения муфты. Пример расчета приведен ниже:

$$\omega_{_{\rm M}} = \frac{\pi n_{_{\rm M}}}{30} = \frac{\pi n_{_{\rm H}}}{30U_{_{\rm M}}} \quad [c^{-1}],$$

где $n_{_{\rm M}}$ — частота вращения вала муфты [мин $^{-1}$]; $U_{_{\rm M}}$ — передаточное число передач от главного вала к валу муфты.

Коэффициент использования числа ходов p выбирается из табл. 4.4, частота ходов $n_{_{\rm H}}$ – из задания на проектирование.

Суммарная площадь поверхностей трения определяется по формулам:

$$F = 2F_{\rm BC} \cdot n$$
 — для однодисковых муфт со вставками;

$$F = m \cdot \pi (R_2^2 - R_1^2)$$
 — для многодисковых муфт с накладками.

Таблица 4.4 Значения коэффициента использования числа ходов p

Тип кузнечно-прессового оборудования	Частота ходов пресса <i>п</i> _н [мин ⁻¹]	Значение <i>р</i>
Листоштамповочные вытяжные, гибочные и обрезные		
прессы большой мощности	до 15	0,70-0,85
То же, средней мощности	20–40	0,50-0,65
Горизонтально-ковочные машины, листовые ножницы,		
обрезные и универсальные листоштамповочные прессы		
средней мощности	25–60	0,55-0,70
Кривошипные горячештамповочные и чеканочные		
прессы, ножницы сортовые большой мощности	40–70	0,45-0,55
То же, средней мощности	70–110	0,30-0,45
Универсальные листоштамповочные и обрезные прессы,		
быстроходные	90–200	0,20-0,45

Рассчитанное по формуле (8) значение $K_{\rm изн}$ не должно превышать допускаемое значение $K_{\rm изн}$, которое составляет 0,7–0,8 МДж/(м² · мин) – для однодисковых муфт со вставками из ретинакса и 0,55÷0,65 МДж/(м² · мин) – для многодисковых муфт с накладками феродо.

Для муфт включения пресс-автоматов, работающих в автоматическом режиме, проверка по показателю износа не производится.

Рассмотрим пример расчета $I_{\rm BM}$ для привода листоштамповочного пресса с шестерне-эксцентриковым главным валом, кинематическая схема которого представлена на рис. 4.1

В приводе вращение от электродвигателя через клиноременную передачу передается маховику, установленному на приемном валу. Маховик вращается постоянно без выключения электродвигателя. Для обеспечения периодического движения ползуну вначале необходимо включить муфту, а при подходе ползуна к верхнему положению выключить муфту и включить тормоз. Для приведения моментов инерции масс, вращающихся с различной угловой скоростью (на разных валах) необходимо учитывать передаточное отношение. Момент инерции масс, вращающихся с меньшей угловой скоростью, чем вал, к которому они приводятся, определяется делением момента инерции на квадрат передаточного отношения, валами с большей – умножением.

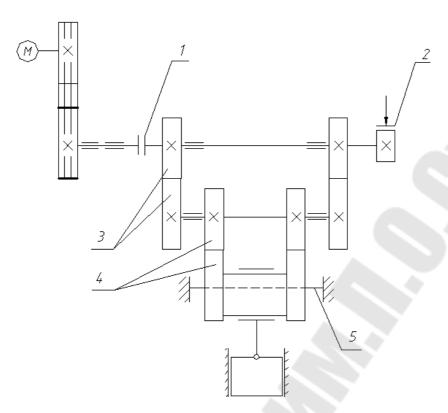


Рис. 4.1. Кинематическая схема главного привода листоштамповочного пресса усилием 4 Мн:
 1 – муфта; 2 – тормоз; 3 – быстроходная зубчатая передача;
 4 – тихоходная зубчатая передача; 5 – ось шестерне-эксцентрика

Вначале необходимо установить, какие детали привода являются ведомыми. Так, после включения муфты (рис. 4.1) начинают вращаться ведомые части муфты, моменты инерции которых $I_{\rm M}$, шестерни быстроходной зубчатой передачи ($2I_{\rm III}^{\rm B}$), тормозной диск ($I_{\rm T}$). Угловая скорость этих масс одинакова и равна угловой скорости муфты $\omega_{\rm M}$. На промежуточном валу находятся два колеса быстроходной передачи, момент инерции их $2I_{\rm K}^{\rm B}$ и две шестерни тихоходной передачи $2I_{\rm III}^{\rm T}$. Угловая скорость этого вала $\omega_{\rm np} = \omega_{\rm M}/U_{\rm 3II}^{\rm B}$ ($U_{\rm 3II}^{\rm B}$ — передаточное число быстроходной зубчатой передачи). На оси 5 шестернеэксцентрика вращается блок, состоящий из двух зубчатых венцов (колеса тихоходной зубчатой передачи с моментами инерции $2I_{\rm K}^{\rm T}$) и эксцентрика, который передает движение шатуну. Момент инерции эксцентрика $I_{\rm 3}$. Шестернеэксцентрик имеет угловую скорость $\omega_{\rm min} = \omega_{\rm M}/(U_{\rm 3II}^{\rm B} \cdot U_{\rm 3II}^{\rm T})$ ($U_{\rm 3II}^{\rm T}$ — передаточное число тихоходной зубчатой передачи.) Частота вращения шестерне-эксцентрика соответствует частоте ходов ползуна пресса.

Таким образом, для схемы привода, приведенной на рис. 1, момент инерции ведомых частей привода, приведенный к валу муфты:

$$I_{\rm BM} = I_{\rm M} + 2I_{\rm III}^{\rm B} + I_{\rm T} + \left(2I_{\rm K}^{\rm B} + 2I_{\rm III}^{\rm T}\right)/(U_{\rm 3II}^{\rm B})^2 + \left(2I_{\rm K}^{\rm T} + I_{\rm 9}\right)/(U_{\rm 3II}^{\rm B} \cdot U_{\rm 3II}^{\rm T})^2.$$

Моменты инерции валов в расчете можно не учитывать ввиду их малой величины. Моменты инерции вращающихся деталей определяются: для диска радиусом R и толщиной H из материала плотностью ρ , который вращается относительно центральной оси $I_{\rm L} = \pi H \rho R^4/2$, кольца (диска с центральным отверстием радиуса r)

 $I_{\rm K}=\pi H \rho (R^4-r^4)/2$; для эксцентриков, ось вращения которых не совпадает с центральной осью: $I_9=I+m\cdot e^2$ (I- момент инерции относительно центральной оси; m- масса эксцентрика; e- расстояние между осями, т. е. эксцентриситет). Плотность деталей из стали $\rho=860~{\rm kr/m}^3$, чугунных $\rho=7000~{\rm kr/m}^3$.

Детали сложной формы, например, зубчатое колесо, имеющие ступицу, диск и венец, разбивают на простые элементы, рассчитывают их моменты инерции, затем суммируют.

5. ВЫБОР И РАСЧЕТ ФРИКЦИОННЫХ ДИСКОВЫХ ТОРМОЗОВ

Расчет тормоза сводится к определению тормозного момента и выбору силовых элементов, обеспечивающих получение такого момента. При этом определяют удельные усилия на поверхностях трения и величину показателя износа.

Требуемый тормозной момент M_{T} [Hм]:

$$M_{T} = 28,65 I_{BT} \omega_{T}^{2} / (U_{T} \cdot \alpha_{T}^{0}),$$
 (9)

где $I_{\rm BT}$ — момент инерции ведомых деталей привода, приведенный к валу тормоза, кг·м²; $\omega_{\rm T}$ — угловая скорость вала тормоза, с¹; $U_{\rm T}$ — передаточное число передач от вала тормоза к главному валу; $\alpha_{\rm T}^{~0}$ — угол торможения, град (угол поворота главного вала за время торможения); $I_{\rm BT}$ рассчитывают аналогично $I_{\rm BM}$ по методике, изложенной выше; $\omega_{\rm T}$ и $U_{\rm T}$ определяют из кинематического расчета привода. При установке тормоза и муфты на одном валу $I_{\rm BT} = I_{\rm BM}$; $\omega_{\rm T} = \omega_{\rm M}$; $U_{\rm T} = U_{\rm M}$; $\alpha_{\rm T}^{\rm o}$ принимают 8–12° для листоштамповочных прессов, 20–30° — для ГКМ, КГШП и быстроходных прессовавтоматов.

По найденному требуемому тормозному моменту подбирают тормоз, при конструировании тормоза определяются размеры его рабочих элементов.

Формулы тормозного момента для дисковых тормозов аналогичны формулам (6) и (7). Для тормоза со вставками:

$$\mathbf{M}_{\mathrm{T}} = 2 f q_{\mathrm{T}} R_{\mathrm{cp}} n F_{\mathrm{BC}} \,,$$

где $q_{\rm T}=1,0\div1,2$ МПа при частоте вращения вала тормоза до 180 мин $^{-1}$ и $q_{\rm T}=0,8\div0,4$ МПа при частоте вращения 180–300 мин $^{-1}$ (большее значение при меньшей частоте вращения).

Для тормозов с накладками из феродо:

$$M_{T} = \frac{2}{3}\pi q_{T} fm(R_{2}^{3} - R_{1}^{3}),$$

где $q_T = 0,4\div0,5$ МПа при частоте вращения вала тормоза до $180\,\mathrm{Muh}^{-1}$ и $q_T = 0,2\div0,1$ МПа при частоте вращения $180-350\,\mathrm{Muh}^{-1}$.

Из приведенных формул рассчитывают $q_{\rm T}$, которое необходимо при определении диаметра пружин.

Тормоза как и муфты проверяют по показателю износа по формуле:

$$K_{\text{\tiny MSH}} = a_{\text{\tiny T}} \frac{I_{\text{\tiny BT}} \omega_{\text{\tiny T}}^2}{2F} p \cdot n_{\text{\tiny H}},$$

где $a_{\rm T} = 0.8$.

Допускаемые значения $[K_{_{\rm изн}}]$ составляют для тормозов со вставками из ретинакса $0.5\div0.6$ МДж/(${\rm M}^2\cdot{\rm M}{\rm M}{\rm H}$), для дисковых тормозов с накладками из феродо $-0.4\div0.5$ МДж/(${\rm M}^2\cdot{\rm M}{\rm M}{\rm H}$).

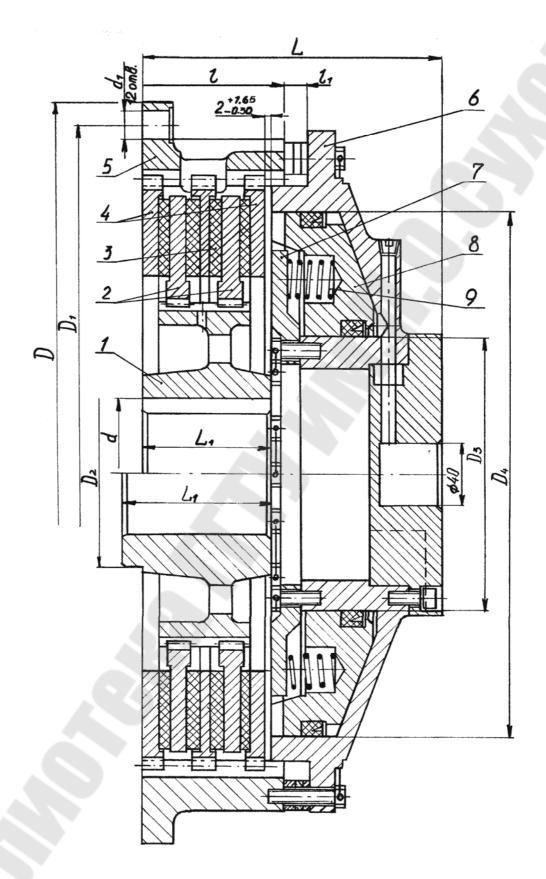
При использовании полых дисков с улучшенными условиями охлаждения $[K_{_{\rm изн}}]$ увеличивается на 10–15 % [3].

ПРИЛОЖЕНИЯ

УНИФИЦИРОВАННЫЕ ФРИКЦИОННЫЕ МУФТЫ И ТОРМОЗА

Приложение 1

Муфты пневмофрикционные многодисковые раздельного управления тип У16...


Предназначены для периодического соединения постоянно вращающейся ведущей части привода машины с ее ведомой частью и передачи крутящего момента на приводной вал машины для выполнения технологической операции. Применяются в механических приводах кузнечно-прессовых машин.

Устройство и работа. Муфта (рис. П.1.1) состоит: из ведомых 2 и ведущих 3 и 4 дисков с фрикционными элементами; ступицы 1, связывающей ведомые диски муфты с приводным валом; корпуса 5, связывающего ведущие диски муфты с ведущей частью привода; поршня 8 и крышки 6, служащей цилиндром пневматической камеры; упорного кольца 7 и пружин 9; устройства для компенсации износа фрикционного материала муфты.

При включении пневмораспределителя сжатый воздух поступает в пневмокамеру цилиндра (крышка 6). Под действием сжатого воздуха поршень 8, перемещаясь в осевом направлении и преодолевая усилие пружины, зажимает ведомые диски 2 с ведущими дисками 3 и 4. Происходит включение муфты. Крутящий момент от маховика через ведомые диски передается на вал машины.

При выключении пневмораспределителя происходит выпуск сжатого воздуха из пневмокамеры. Под действием усилия пружин 9 производится ускоренный отвод поршня 5 из зоны трения в исходное положение. Муфта выключается; ведомые диски совместно с приводным валом машины отсоединяются от ведущей части привода.

Габаритные и присоединительные размеры муфт пневмофрикционных многодисковых приведены на рис. П.1.1 и в табл. П.1.1.

 $Puc.\ \Pi.1.1.$ Габаритные и присоединительные размеры муфт многодисковых пневмофрикционных раздельного управления

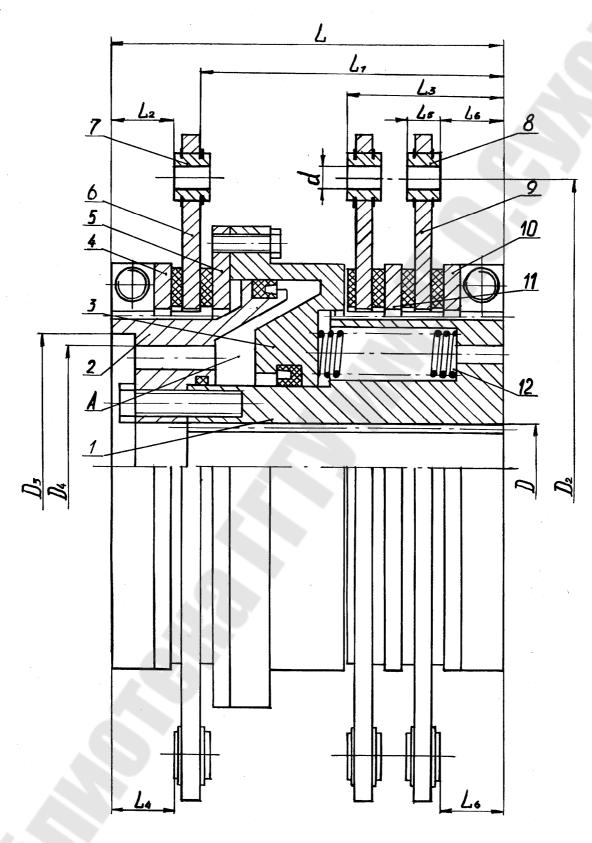
	1				Doggeon	** **				Табл	ица П.1.
Модель	Dh9	D ₁	d_1	D_2d11	Размер Условия обозначения отверстия <i>d</i> по ГОСТ 6033-80	L_1	l	<i>l</i> ₁	L	$D_4\frac{H11}{d11}$	$D_3 \frac{H11}{d11}$
У1636 УА1636 УБ1636	420	390	17	_	D10x72x82A ₃ V ₃ Эв. 75x3,5x20 S _{3a} D10x92x102 A ₃ V ₃	70	74	9,0	162	300	160
УВ1636 У1639 УА1639 УБ1639	510	480	17	110	\emptyset 80 $A^{(+0,030)}$ D 10x92x102 A_3V_3 Θ 8.85x3,5x24 S_{3a} D 10x102x112 A_3V_3	85	89	10,5	181	360	200
УВ1639 У1642				140	$\emptyset 100A^{(+0,035)}$ $D10x102x112A_3V_3$	120	4		70	-	
УА1642 УБ1642	640	590	22	_	Эв. 110х3,5х30 S _{3а} D10х112х125 A ₃ V ₃	100	100	12,0	201	460	250
УВ1642				150	\emptyset 110 $A^{(+0,035)}$	150					
У1645 УА1645	750	700	22	_	$D10x112x125A_3V_3$ Эв. 130x3,5x36 S_{3a}	120	112	15,0	231	560	250
УВ1645				160	\emptyset 120 $A^{(+0,035)}$	160					
У1646 УА1646	790	740	26	_	$D10x112x125A_3V_3$ Эв. 130x3,5x36 S_{3a}	125	112	15,0	244	600	250
УВ1646	1			160	\emptyset 120 $A^{(+0,035)}$	170					

Таблица П.1.2

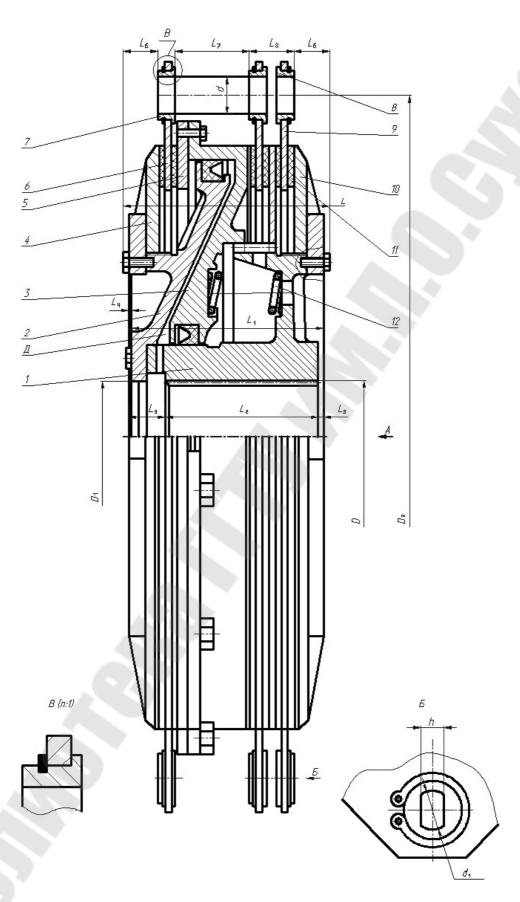
Техническая характеристика

. (Модели		
	У1636	У1639	У1642	ТУ1645	У1646
Модель	УА1636	УА1639	УА1642	ТУА1645	УА1646
	УБ1636	УБ1639	УБ1642	УВ1645	УВ1646
	УВ1636	УВ1639	УВ1642		
Крутящий момент, кН·м	4	8	16	32	40
Момент инерции ведомых масс,					
кг·м ²	0,154	0,405	1,206	2,63	3,39
Момент инерции ведущих масс,					
кг·м ²	1,08	2,66	6,54	15,6	19,4
Частота вращения, мин ⁻¹			500		
Число одиночных включений					
в минуту			40		
Допустимый износ одной					
накладки, мм	3,0	3,5	4,0	5,0	5,0
Наибольший ход поршня до					
регулировки, мм	5,0	5,5	6,0	7,0	7,0
Объем пневмокамеры, м ³ :					
– наибольший	$3,0.10^{-3}$	$4,5\cdot10^{-3}$	$8,0.10^{-3}$	$15,4\cdot10^{-3}$	$18,5 \cdot 10^{-3}$
– наименьший	$1,5\cdot 10^{-3}$	$2,0.10^{-3}$	$3,2\cdot10^{-3}$	$5,6\cdot10^{-3}$	$6,7\cdot10^{-3}$
Рабочее давление воздуха, МПа	0,390	0,436	0,430	0,420	0,420

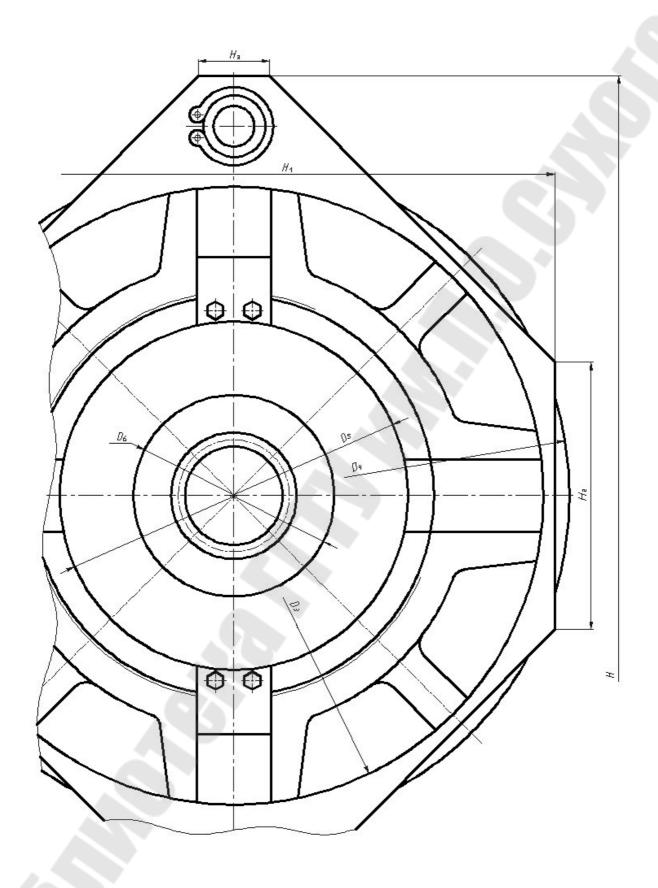
Муфты-тормоза жесткосблокированные фрикционные многодисковые с пневматическим включением типа УД31..., УВ31...


Предназначены для периодического соединения постоянно вращающихся ведущих частей привода машины с ведомыми частями и передачи крутящего момента для выполнения технологических операций, а также для периодического разъединения и торможения ведомых частей при непрерывно работающем электродвигателе. Применяются в механических приводах кузнечно-прессовых машин.

Устройство и работа. Муфта-тормоз (рис. П.2.1, П.2.2) состоит из ступицы *1*, неподвижно закрепляемой на валу привода машины; поршня *2*, жестко соединенного со ступицей; подвижного в осевом направлении пневмоцилиндра *3*; ведущих дисков муфты *9* с фрикционными элементами (накладками); ведомого диска *11*, подвижно соединенного зубчатым соединением со ступицей; опорного диска муфты *10*, соединенного с помощью резьбы со ступицей; тормозного диска 6 с фрикционными накладками; нажимного тормозного диска *5*, жестко соединенного с пневмоцилиндром; опорного диска-тормоза *4*, *с* помощью резьбы (для типа УВ) или шлицев (для типа УД) соединенного с поршнем, и тормозных пружин *12*. Тормозной диск с помощью втулок *7* соединяется со станиной и имеет только осевое перемещение. Ведущие диски муфты с помощью втулок *8* соединяются с постоянно вращающимся маховиком машины и, кроме вращательного движения, имеют осевое перемещение.


При включении пневмораспределителя машины сжатый воздух через канал, имеющийся на валу муфты-тормоза, и отверстие в ступице муфты поступает в пневмо-камеру Д. Под действием сжатого воздуха пневмоцилиндр, перемещаясь в осевом направлении и преодолевая усилие тормозных пружин, отводит тормозной диск от фрикционных накладок ведущего тормозного диска. Диск освобождается, и происходит выключение тормоза. При дальнейшем осевом движении цилиндр перемещает ведущие диски муфты, ведомый диск и прижимает их к опорному диску. Происходит включение муфты. Вращение от маховика через ведущие, ведомый и опорный диски, пневмоцилиндр и ступицу передается на вал привода — осуществляется рабочий ход машины.

При включении пневмораспределителя происходит выпуск сжатого воздуха из пневмокамеры. Под действием усилия тормозных пружин пневмоцилиндр перемещается в обратном направлении и освобождает ведущие и ведомый диски. Происходит выключение муфты. При дальнейшем перемещении пневмоцилиндр с помощью нажимного тормозного диска прижимает ведущий тормозной диск к опорному. Происходят включение тормоза, остановка муфты-тормоза и вала привода машин. Вращение от маховика передается только ведущим дискам муфты.


Габаритные и присоединительные размеры жесткосблокированных муфттормозов приведены на рис. П.2.1, П.2.2 и в табл. П.2.1, П.2.2.

 $\it Puc.~\Pi.2.1.$ Габаритные и присоединительные размеры муфты-тормоза типа УД

 $Puc.\ \Pi.2.2.\ \Gamma$ абаритные и присоединительные размеры муфты-тормоза типа УВ (окончание см. на с. 19)

Рис. П.2.2. Окончание (нач. см. на с. 18)

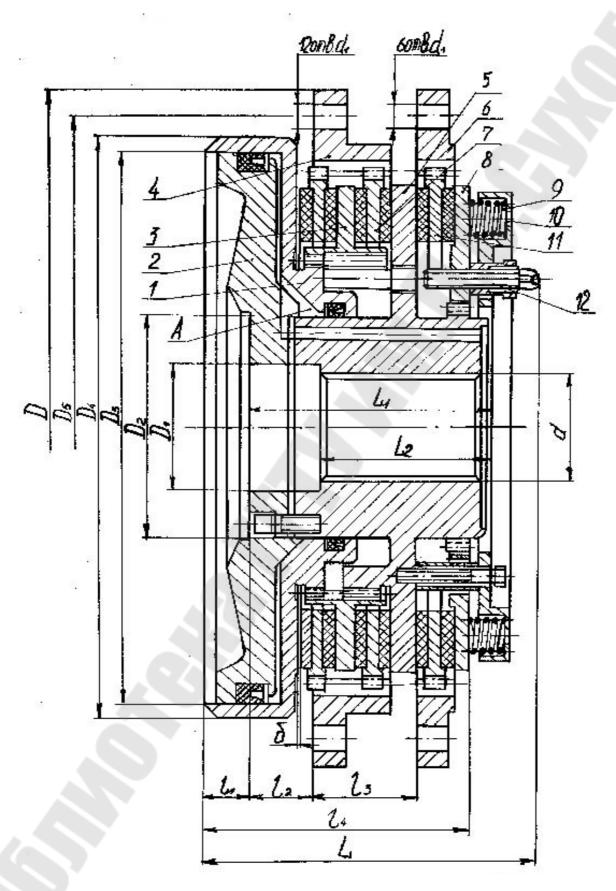
Размеры, мм

Модель	Условное обозначение отверстия по ГОСТ 6033-51	D_1	D_2	D_3	L	L_1	L_2	L_3	L_4	L_5	L_6	Н	h	d	d_1
УД3124	Эв. 40х2,5х14 АЅ _{за}	40	260+0,6	110 ^{+0,8}	130	104	34,5	54,5	19,5	19,5	15	315	18 ^{+0,18}	20+0,21	22
УД3130	Эв. 50х2,5х18 AS_{3a}	50	320+0,7	160+0,1	130	100	34,5	54,5	19,5	19,5	15	370	18 ^{+0,18}	20+0,21	22

Таблица П.2.2

Размеры, мм

Модель	Условное обозначение отверстия <i>D</i> по ГОСТ 6033-51	D_2	D_3	D_4	D ₅	D_6	L	L_1	L_2	L_3	L_5	L_6	L_7	L_8	Н	H_1	H_2	d	d_1
УВ3132	Эв. 55x2,5x20h6S _{за} X	$345 \pm {}^{0,3}$	265	300	136	95	151	147	100	29	_	25	15	35	410	265	90	20H12	22
УВ3135	Эв. 55x2,5x20h6S _{за} X	$400 \pm {}^{0,3}$	300	335	160	95	157	151	100	41	_	25	15	35	480	300	100	30H12	32
УВ3138	Эв. 75х3,5х20q6 <i>S</i> _{за} Ш	$465 \pm {}^{0,3}$	360	405	190	115	168	137	97	43	28	35	15	35	550	365	135	30H12	32
УВ3141	Эв. 85х3,5х24q6 <i>S</i> _ч Ш	$570 \pm {}^{0,5}$	455	500	250	130	180	177	115	40	15	37	15	35	660	465	175	36H12	38
УВ3144	Эв. 110х3,5х30q6 <i>S</i> _ч Ш	$670 \pm {}^{0,5}$	545	600	310	155	210	200	119	46	27	46	17	41	760	550	225	36H12	38
УВ3146	Эв. 130х3,5х36h6S _{за} Х	$755 \pm {}^{0,5}$	625	675	310	170	225	222	123	50	40	45	20	53	860	640	280	50H12	55


^{*} Применительно к прессам однокривошипным простого действия усилием от 100 до 1000 кН

Муфты-тормоза жесткосблокированные фрикционные с пневматическим управлением тип УЗ...

Предназначены для периодического соединения постоянно вращающихся ведущих частей привода машины с ведомыми частями и передачи крутящего момента для выполнения технологических операций, а также для периодического разъединения и торможения ведомых частей при непрерывно работающем электродвигателе. Применяются в механических приводах кузнечно-прессовых машин.

Устройство и работа. Муфта-тормоз (рис. П.З.1) состоит из ступицы 5, неподвижно закрепленной на валу привода машины; поршня 2, жестко соединенного со ступицей; подвижного в осевом направлении пневмоцилиндра 1; ведущих дисков 7 муфты с фрикционными элементами (накладками); промежуточного диска 3 муфты, подвижно соединенного зубчатым соединением со ступицей; опорного диска 10, жестко соединенного со ступицей; ведущего тормозного диска 11 с фрикционными накладками; нажимного диска тормоза 8, подвижно соединенного зубчатым соединением со ступицей; толкателей 12, ввернутых в нажимной диск тормоза и упирающихся в пневмоцилиндр; тормозных пружин 9; корпуса 4, подвижно соединенного с ведущими дисками, и корпуса 6, подвижно соединенного с ведущим тормозным диском. Корпус 4 крепится болтами к маховику, корпус 6 — промежуточными кронштейнами к станине машины.

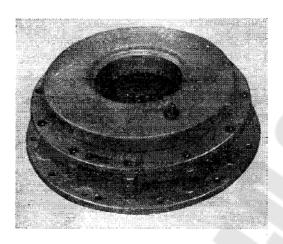
При включении пневмораспределителя сжатый воздух через отверстие в ступице муфты поступает в пневмокамеру А. Под действием сжатого воздуха пневмоцилиндр, перемещаясь вдоль оси вала, зажимает ведущие диски муфты, связанные с маховиком. Происходит включение муфты. Одновременно пневмоцилиндр воздействует на толкатели и, преодолевая усилие тормозных пружин, отводит нажимной диск и отключает тормоз. Вращение от маховика через корпус 4, ведущие диски, промежуточный диск и ступицу передается на вал и осуществляется рабочий ход машины.

 $Puc.\ \Pi.3.1.\ \Gamma$ абаритные и присоединительные размеры муфты тормоза фрикционного типа УЗ...

При выключении пневмораспределителя происходит выпуск сжатого воздуха из пневмокамеры А. Под действием тормозных пружин нажимной диск прижимается к тормозному и посредством толкателей отводит пневмоцилиндр в исходное положение. При этом освобождаются ведущие и промежуточные диски муфты. Происходит включение тормоза и остановка вала привода машины. Вращение от маховика передается только корпусу 4 и ведущим дискам муфты.

Габаритные и присоединительные размеры муфт-тормозов приведены на рис. П.3.1. и табл. П.3.2.

Таблица Π .3.1 Техническая характеристика

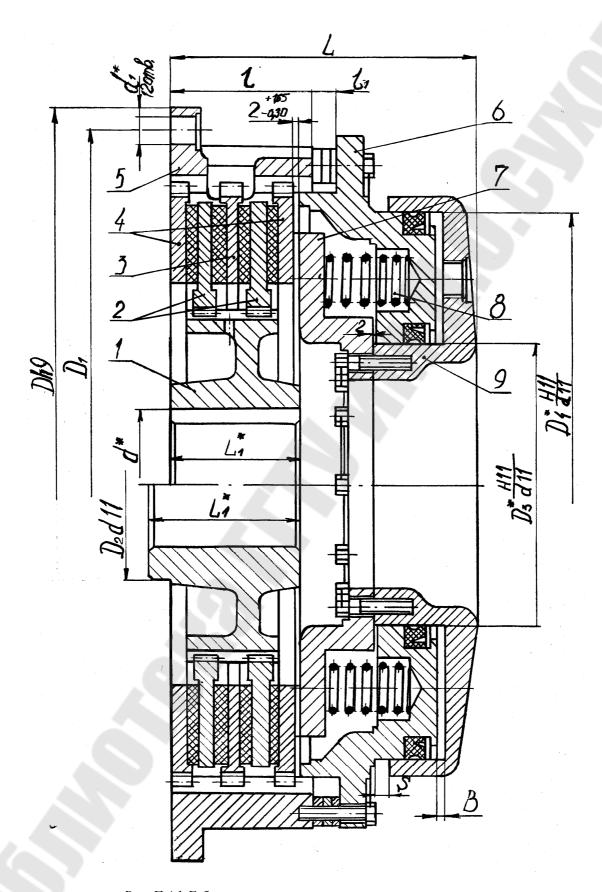

		M	одель	
Параметр	У3311 У3312 У3313 У3314	У3411 У3412 У3413 У3414	У3511 У3512 У3513 У3514	У3611 У3612 У3613 У3614
Крутящий момент, кН·м	5	10	20	40
Тормозной момент, кН·м	0,8	1,25	2,0	3,2
Момент инерции кг·м ² : – ведущих масс – ведомых масс	0,466 0,707	1,22 1,88	3,42 5,0	7,07 11,83
Мощность трения на тормозе, кВт	1,01	1,50	2,33	3,44
Допустимый износ одной накладки, мм	2,0	2,5	3,0	3,5
Наибольший ход поршня до регулировки, мм	6,5	7,6	8,7	10,5
Объем пневмокамеры, м ³ : – наибольший – наименьший	$1,15 \cdot 10^{-3} \\ 0,5 \cdot 10^{-3}$	$2,1\cdot10^{-3} \\ 1,0\cdot10^{-3}$	$3,4\cdot10^{-3} \\ 1,5\cdot10^{-3}$	$6,5 \cdot 10^{-3} $ $2,65 \cdot 10^{-3}$
Наибольшее давление воздуха, МПа	0,390	0,390	0,395	0,430

Размеры, мм

]	Модель	Dh9	D_1	$D_2 \frac{H11}{d11}$	$D_3\frac{H11}{d11}$	D_4	D ₅	Условные обозначения отверстия по ГОСТ 6033-511	l_1	l_2	<i>l</i> ₃	<i>l</i> ₄	L	L_1	L_2	d_1	δ	Масса, кг
	У3311 У3312 У3313 У3314	420	85	125	340	360	390	$D10$ х72х82 AV_3 Эв. 75х3,5х20 S_{3a} $\varnothing 80A$ $D10$ х82х92 AV_3	24	28	61	141	226	116 116 139 116	ı	17	1–1,5	85,2 85,2 84,8 86,8
	У3411 У3412 У3413 У3414	510	118	160	420	445	480	$D10$ х92х102 AV_3 Эв. 85х3,5х24 S_{3a} $\varnothing 110A$ $D10$ х102х112 AV_3	28	38	72	171	261	142 142 173 142	_	17	2–3	125,0 125,0 124,0 127,0
	У3511 У3512 У3513 У3514	640	150	200	520	550	590	$D10x102x112 AV_3$ Эв. $110x3,5x30 S_{3a}$ $\varnothing 130A$ $D10x112x125 AV_3$	27	44	84	194	284	165 165 192 165	_	22	2–3	258,6 258,6 258,0 263,0
	У3611 У3612 У3613 У3614	750		250	630	660	700	$D10$ х 112 х 125 AV_3 Эв. 130 х $3,5$ х 36 S_{3a} $\varnothing 150$ A	26	56	94	219	328	192 192 228	125	22	2–3	431,5 431,5 440,3

Приложение 4

Тормоза пневмофрикционные многодисковые раздельного управления


Предназначены для торможения, остановки и удержания в неподвижном состоянии периодически движущихся рабочих органов машины при выключенной муфте и непрерывно работающем электродвигателе. Применяются в механических приводах кузнечно-прессовых машин.

Устройство и работа. Тормоз (рис. Π .4.1) состоит из фрикционных тормозных дисков 2, 3 и 4; ступицы 1, соединяющей промежуточные диски 2 с приводным валом машины; корпуса 5, крепящегося к станине машины и связывающего станину с тормозными дисками 3 и 4; тормозных пружин 8 и нажимного диска 7; поршня 6 и крышки 9, служащей цилиндром пневматической камеры.

При выключенном пневмораспределителе и отсутствии сжатого воздуха в пневмокамере тормоза под действием усилия тормозных пружин 8 поршень 6 через нажимной диск 7 сжимает тормозные диски 2, 3 и 4, обеспечивая номинальный тормозной момент. Тормоз находится во включенном состоянии.

При включенном пневмораспределителе сжатый воздух поступает в пневмокамеру тормоза. Под действием сжатого воздуха поршень 6, преодолевая усилие тормозных пружин 8, перемещается в осевом направлении и отводит нажимной диск 7 от тормозных дисков. Происходит выключение тормоза (растормаживание). Вал привода с промежуточными дисками 2 при включенной муфте приводит в движение рабочие органы машины.

Габаритные и присоединительные размеры тормозов приведены на рис. П.4.1 и в табл. П.4.1.

 $Puc.\ \Pi.4.1.\ \Gamma$ абаритные и присоединительные размеры тормоза пневмофрикционного многодискового

Размеры, мм

Модель	Dh9	D_1	d_1	D_2d11	Условные обозначения по ГОСТ 6033-51	L_1^*	l	l_1	L	$D_4 \frac{H11}{d11}$	$D_3 \frac{H11}{d11}$	S	В	Масса, кг
У2632 УА2632 УБ2632	420	390	17	-	$D10x72x82 A_3V_3$ Эв. $75x3,5x20 S_{3a}$ $D10x92x102 A_3V_3$ $\varnothing 80A^{(+0,030)}$	70	74	9	165	300	160	12	5	80,92 80,92 80,15
УВ2632 У2635 УА2635 УБ2635	510	480	17	- -	D10x92x102 A ₃ V ₃ Эв. 85x3,5x24 S _{3a} D10x102x112 A ₃ V ₃	85	89	10,5	188	360	200	12	6	81,98 125,1 125,1 124,4
УВ2635 У2638 УА2638 УБ2638	640	590	22	140 _	$\varnothing 100 A^{(+0,035)}$ $D 10 x 10 2 x 112 A_3 V_3$ $9 B. 110 x 3.5 x 30 S_{3a}$ $D 10 x 112 x 125 A_3 V_3$	120	100	12	218	460	250	14	6	127,1 231,3 231,3 230,7
УВ2638 У2641 УА2641	750	700	22	150 _	\varnothing 110A $^{(+0,035)}$ D 10х112х125 A_3V_3 Эв. 130х3,5х36 S_{3a}	150	112	15	241	560		16	7	234,7 349,8 349,8
УВ2641 У2642 УА2642	790	740	26	160	\emptyset 120 $A^{(+0,035)}$ D 10х112х125 A_3V_3 Эв. 130х3,5х36 S_{3a}	160 125	112	15	263	600	340	16	7	352,5 443,4 443,4
УВ2642				160	Ø120A ^(+0,035)	170								448,6

Таблица П.4.2

Техническая характеристика

			Модель		
	У2632	У2635	У2638	У2641	У2642
Параметр	YA2632	УА2635	УА2638	УА2641	УА2642
	УБ2632	УБ2635	УБ2638	УБ2641	УБ2642
	YB2632	УВ2635	УВ2638	УВ2641	УВ2642
Тормозной момент, кН⋅м	1,6	3,2	6,3	12,5	16,0
Момент инерции ведомых					
масс, $\kappa\Gamma$ ·м ²	0,154	0,405	1,206	2,63	3,39
Частота вращения, об/мин			500		
Число одиночных					-
включений в минуту			40		
Допускаемый износ одной					
накладки, мм	3,0	3,5	4,0	5,0	5,0
Наибольший ход поршня					
до регулировки, мм	5,0	5,5	6,0	7,0	7,0
Объем пневмокамеры, м ^{3:}					
– наибольший	$3,6\cdot10^{-3}$	5,6.10-3	$9,5\cdot10^{-3}$	14,0.10-3	$17,3\cdot10^{-3}$
– наименьший	2,0.10-3	3,2·10 ⁻³	4,7·10 ⁻³	6,3·10 ⁻³	$7,7\cdot10^{-3}$
Давление воздуха при					
растормаживании, мм	0,21	0,23	0,20	0,23	0,26

Таблица П.4.3 Параметры фрикционных элементов типовых муфт и тормозов

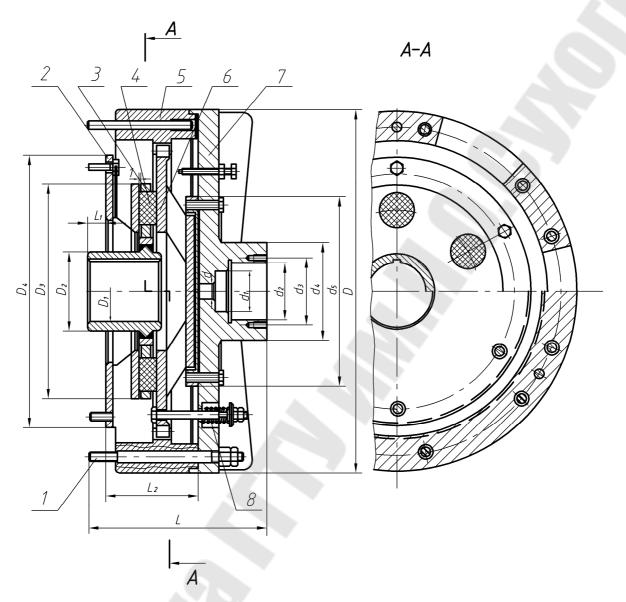
Тип муфты,	Момент крутящий	Момент тормозной		рикционных док, мм	Коэффициент трения	
тормоза, муфты- тормоза	Кругящии Мм, кН∙м	Мт, кН∙м	Наружный диаметр $D_{ m H}$	материала, <i>f</i>	пар трения, т	
У1636 УА1636 УБ1636 УВ1636	4	-6	300	240	0,42	4
У1639 УА1639 УБ1639 УВ1639	8		360	300	0,42	4
У1642 УА1642 УБ1642 УВ1642	16		460	380	0,42	4
У1645 УА1645 УБ1645 УВ1645	32	_	560	480	0,42	4
У1646 УА1646 УБ1646 УВ1646	40	-	600	520	0,42	4
У2632 УА2632 УБ2632 УВ2632	-	1,6	300	240	0,42	4

Тип муфты,	Момент крутящий	Момент тормозной	накла	рикционных док, мм	Коэффицие нт трения	Количество пар трения, <i>т</i>	
тормоза, муфты- тормоза	Мм, кН∙м	Мт, кН·м	Наружный диаметр <i>D</i> _н	Внутренний диаметр $D_{\rm B}$	материала, f		
У2635 УА2635 УБ2635 УВ2635	_	3,2	360	300	0,42	4	
У2638 УА2638 УБ2638 УВ2638	-	6,3	460	400	0,42	4	
У2641 УА2641 УВ2641	-	12,5	560	500	0,42	4	
У2642 УА2642 УВ2642	-	16,0	600	540	0,42	4	
V3311 V3312 V3313 V3314	5	0,8	300	240	0,42	4/2*	
V3411 V3412 V3413 V3414	10	1,25	380	320	0,42	4/2	
V3511 V3512 V3513 V3514	20	2,0	480	420	0,42	6/2	
V3611 V3612 V3613 V3614	40	3,2	560	500	0,42	6/2	
УД3124	0,25	0,25	170	130	0,42	2	
УД3130	1,0	0,63	210	170	0,42	4/2	
УВ3132	1,6	0,4	260	220	0,42	4/2	
УВ3135	3,2	0,63	295	255	0,42	4/2	
УВ3138	6,3	1,0	355	295	0,42	4/2	
УВ3141	12,5	2,0	450	390	0,42	4/2	
УВ3144	25	3,1	540	480	0,42	4/2	
УВ3146	40	3,8	620	540	0,42	4/2	

^{*} В числителе – для муфт; в знаменателе – для тормоза.

Муфты пневмофрикционные однодисковые со вставками типы К..., Д...

Предназначены для периодического соединения постоянно вращающихся ведущих частей привода машин с ведомыми частями и передачи крутящего момента для выполнения технологической операции.


Устройство и работа. Муфта консольная типа К... (рис. П.5.1) крепится к маховику с помощью шпилек I, на маховике также закреплен опорный диск 2. Через воздухоподводящую головку, присоединяемую к крышке муфты 7 винтами, сжатый воздух подается к диафрагме. Маховик вращается на подшипниках, установленных на валу, вращение к валу передается от ведомого диска 3 расположенного на концевой части. В диске 3 установлены фрикционные вставки 4 из ретинакса. При выпуске сжатого воздуха через подводящую головку, мембрана смещает нажимной диск 6, направляемый и фиксируемый по шлицам корпуса муфты 5. Вставки 4, размещаемые в гнездах ведомого диска по посадке с зазором, зажимаются между опорным и нажимным дисками, при этом возникает момент трения, передаваемый на вал от маховика. При выпуске воздуха, пружины 8, которые были сжаты, отводят нажимной диск. Между дисками и рабочими поверхностями вставок образуется зазор, и передача вращающего момента от маховика к валу прекращается.

Габаритные и присоединительные размеры муфт и их технические данные приведены в табл. П.5.1.

На рис. П.5.2 показана конструкция двухопорных муфт, размеры которых и технические данные приведены в табл. П.5.2.

Муфты с расчетным крутящим моментом от 400 до 71000 Нм включительно выполняются консольными, а муфты с крутящим моментом от 12500 до 140000 Нм выполняются двухопорными.

Размеры ведомых дисков и вставных блоков даны в табл. П.5.3 и П.5.4.

 $Puc.\ \Pi.5.1.\ \Gamma$ абаритные и присоединительные размеры пневматических одноопорных муфт

Таблица П.5.1

Размеры и технические данные

Услов- ное обозна- чение	D	<i>D</i> 1 по Н7	D2	D3	D4	D5	L	<i>L</i> 1	L2	d	d1	d2 по Н7	d3	d4	Крутя- щий момент Мм в Нм	Рабочее давление воздуха р в МПа	Масса муфты <i>т</i> в кг
муфт									в мм								
K-40 K-80 K-160	440 490 600	60 70 80	90 100 120	260 280 360	330 350 430	230 300 330	220 230 245		85 90	20	50	72	85	120	400 800 1600	0,3 0,29 0,293	75 84 135
K-315 K-630 K-1250 K-1800	650 780 930 1020	90 100 125 140	130 160 180 210	450 530 650 730	520 610 700 810	440 560 680 750	285 295 335 355	60 71 76 96	110 120 140	25	52	80	95	140	3150 6300 12500 18000	0,325 0,321 0,337 0,338	194 268 435 528
K-2500 K-3550 K-5000 K-7100	1120 1250 1400 1500	160 180 200 220	240 260 300 320	830 900 1020 1160	920 1000 1120 1260	810 950 1060 1110	425 455 525 545	118 148 178 198	165	42	75	110	130	160	25000 35500 50000 71000	0,381 0,350 0,347 0,378	737 906 1273 1469

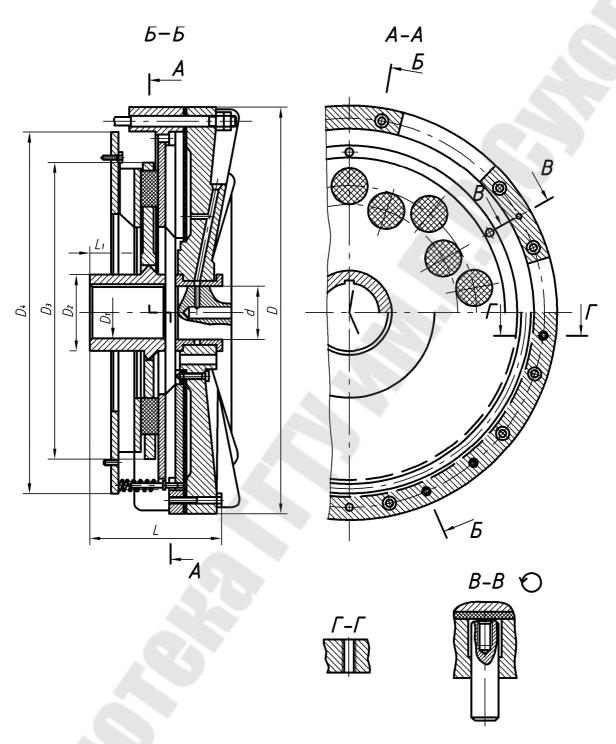


Рис. П.5.2. Габаритные и присоединительные размеры пневматических малоинерционных двухопорных муфт

Таблица П.5.2

Размеры и технические данные

Условное	D	<i>D</i> 1 по <i>H</i> 7	D 2	D 3	D 4	L	<i>L</i> 1	d	Крутящий момент	Рабочее давление	Масса муфты <i>т</i> ,
обозначение муфт				в мм	М _м в Нм	воздуха <i>р</i> в МПа	в кг				
Д-1250	930	125	180	670	730	330	76	100	12500	0,250	526
Д-1800	1020	140	210	780	810	370	96	120	18000	0,250	729
Д-2500	1120	160	240	850	920	415	118	140	25000	0,250	920
Д-3550	1250	180	260	920	1000	450	148	160	35500	0,260	1175
Д-5000	1400	200	300	1060	1120	515	178	180	50000	0,262	1600
Д-7100	1500	220	320	1200	1260	540	188	190	71000	0,280	1965
Д-10000	1530	250	360	1240	1330	580	195	220	100000	0,395	2330
Д-14000	1750	280	430	1400	1500	615	225	240	140000	0,380	3070

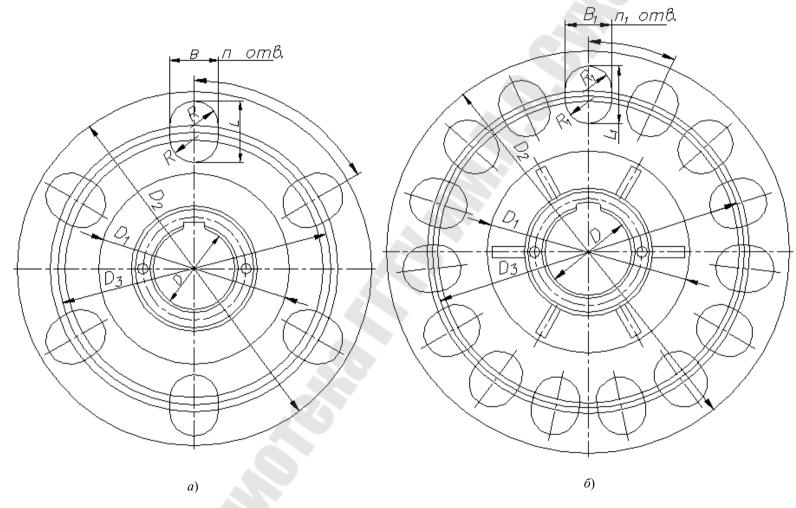
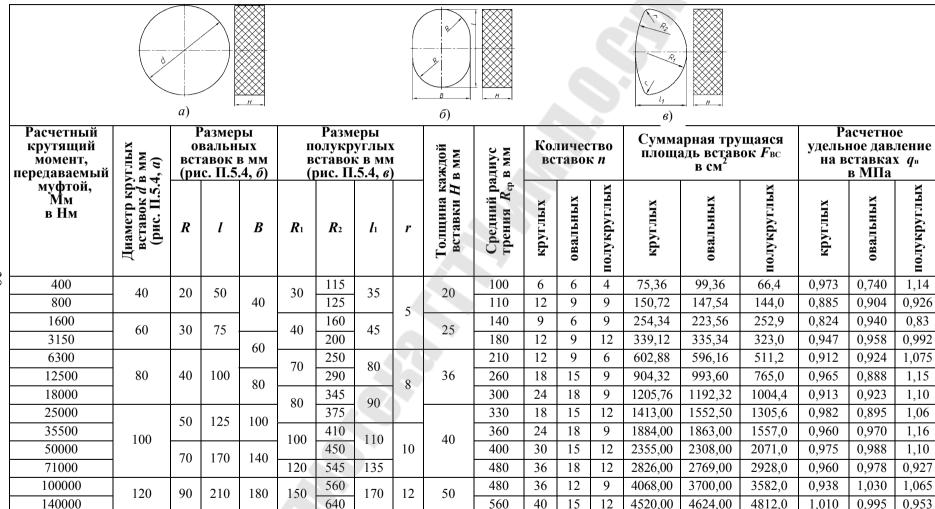


Рис. П.5.3. Ведомые диски муфт (размеры приведены в табл. № П.5.3)


Размеры и технические данные

Передаваемый крутящий	D	D 1	D 2	D 3	В	B 1	L	L ₁	n	n 1	α	α1	R	R 1	Macca
момент в Нм	в мм										в град		в мм		диска в кг
400*	60	130	260	200	40+0,34	_	50+0,34		6	_	60	_	20	_	6,20
800*	70	140	280	220	40+0,34	_	50+0,34	-	9	_	40	_	20	_	7,05
1600*	80	200	360	280	40+0,34	_	75+0,40		6	_	60	_	30	1	15,12
3100*	90	220	450	360	40+0,34	_	75+0,40	_	9	_	40	_	30	1	20,97
6300*	100	240	530	420	40+0,34	_	100+0,40	_	9	_	40	_	40	1	43,22
12500**	125	260	670	520	_	80 +0,4	-	100+0,46	_	15	_	24	_	40	65,49
18000**	140	340	780	600	_	80+0,4	7 - 7	100+0,46	_	18	_	20	_	40	94,64
25000**	160	340	850	660	ı	100+0,46	_	125+0,53	-	15	_	24	1	50	129,10
35500**	180	400	920	720	ı	100+0,46		125+0,53	-	18	_	20	١	50	152,76
50000**	200	450	1060	800	-	140+0,53	-	170+0,53	_	15	_	24	_	70	226,04
71000**	220	480	1200	960	_	140+0,53	_	170+0,53	_	18	_	20	-	70	283,28

^{*}Применяются для одноопорных муфт с крутящим моментом 400–6300 Hм (рис. Π .5.3, a).

^{**}Применяются для одноопорных и двухопорных муфт с крутящим моментом 12500—71000 Нм (рис. $\Pi.5.3$, δ)

Данные по вставкам-блокам

Литература

- 1. Ланской, Е. Н. Элементы расчета деталей и узлов кривошипных прессов / Е. Н. Ланской, А. Н. Банкетов. Москва : Машиностроение, 1966. 380 с.
- 2. Кузнечно-штамповочное оборудование / А. Н. Банкетов [и др.] / под ред. А. Н. Банкетова, Е. Н. Ланского. Москва : Машиностроение, 1982. 576 с.
- 3. Игнатов, А. А. Муфты, тормоза и механизмы управления кривошипных кузнечно прессовых машин / А. А. Игнатов, В. И. Власов. Москва : Машгиз, 1963. 447 с.
- 4. Унифицированные узлы кузнечно прессовых машин : каталог. Москва : ВНИИТЭМР, 1987.

Содержание

1. Назначение муфт и тормозов	3
2. Выбор типа муфты и тормоза и их расположение в приводе	3
3. Конструктивные особенности муфт включения и тормозов	
кривошипных машин	4
4. Выбор и расчет фрикционных муфт	5
5. Выбор и расчет фрикционных дисковых тормозов	11
Приложения	13
Приложение 1	17
Приложение 3	23
Приложение 4	27
Приложение 5	32
Литература	40

Учебное издание

ФРИКЦИОННЫЕ МУФТЫ ВКЛЮЧЕНИЯ И ТОРМОЗА. КОНСТРУИРОВАНИЕ И РАСЧЕТ

Методические указания к курсовому проекту по дисциплине «Теория, расчеты и конструкции прессово-штамповочного оборудования» для студентов специальностей 1-36 01 05 «Машины и технология обработки материалов давлением» и 1-36 20 02 «Упаковочное производство (по направлениям)» дневной и заочной форм обучения

Автор-составитель: Буренков Валерий Филиппович

 Редактор
 Л. Ф. Теплякова

 Компьютерная верстка
 Н. В. Широглазова

Подписано в печать 29.06.07. Формат 60х84/8. Бумага офсетная. Гарнитура Таймс. Цифровая печать. Усл. печ. л. 5,11. Уч.-изд. л. 4,06. Изд. № 70.

E-mail: ic@gstu.gomel.by http://www.gstu.gomel.by

Издатель и полиграфическое исполнение: Издательский центр учреждения образования «Гомельский государственный технический университет имени П. О. Сухого». ЛИ № 02330/0131916 от 30.04.2004 г. 246746, г. Гомель, пр. Октября, 48.