ФИЗИКА И МАТЕМАТИКА

УДК 539.12

НЕПЕРТУРБАТИВНЫЕ РЕШЕНИЯ УРАВНЕНИЙ ДАЙСОНА-ШВИНГЕРА В КВАНТОВОЙ ХРОМОДИНАМИКЕ И СВОЙСТВА ρ -МЕЗОНА

О.П. СОЛОВЦОВА

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Введение. В современной теории сильных взаимодействий – квантовой хромодинамике (КХД), непертурбативные эффекты играют решающую роль как с точки зрения ответа на фундаментальные вопросы, например, объяснение конфайнмента кварков и глюонов, так и для описания феноменологии адронов и соотнесении теоретических результатов с экспериментальными данными. Разработке непертурбативных методов в квантовой теории поля уделяется большое внимание. Один из таких подходов основан на непертурбативных решениях уравнений Дайсона-Швингера (ДШ).

В данной работе рассматривается проблема описания кварк-антикварковых связанных состояний в рамках метода правил сумм КХД [1, 2] на основе непертурбативных решений уравнений ДШ.

Непертурбативный инвариантный заряд и масса кварков. В широко распространенных потенциальных моделях, описывающих свойства систем из легких кварков, используется так называемая конституентная масса кварка, величина которой имеет порядок 300 МэВ. Наряду с этим в КХД расчетах используются массы токовых кварков, имеющие на масштабе $1 \div 2$ ГэВ значения порядка нескольких МэВ (масса u- кварка составляет $1,5 \div 4$ МэВ, а d- кварка $4 \div 8$ МэВ [3]). Взаимосвязь между конституентной и токовой массами носит непертурбативный характер и в настоящее время не достаточно изучена. В данной работе для анализа этой проблемы применяется метод, использующий непертурбативные решения уравнений ДШ. На основе таких решений в работах группы Тюбингенского университета [4, 5, 6] (см. также обзор [7]) были получены зависимости инвариантного заряда и массовой функции легких кварков от безразмерного импульсного аргумента x^1 . Соответствующие результаты представлены на рис. 1 и 2, на которых сплошными линиями изображены полученные в результате фитирования кривые.

Рисунок 1 демонстрирует конечное значение инвариантного заряда в инфракрасной области. Аналогичная инфракрасная «заморозка» возникает и в ряде теоретических методов, например, в предложенном в [8, 9] методе непертурбативного a-разложения и в аналитическом подходе в КХД [10, 11].

Динамическая масса кварков. Поведение массовой функции, изображенной на рис. 2, можно объяснить, используя понятие динамической массы кварка, которая возникает из-за сложной структуры вакуума КХД.

 $^{^{1}}$ Для того чтобы соотнести безразмерный аргумент x с физическим импульсным масштабом, следует привлечь дополнительную информацию, например, провести нормировку, используя экспериментальные данные.

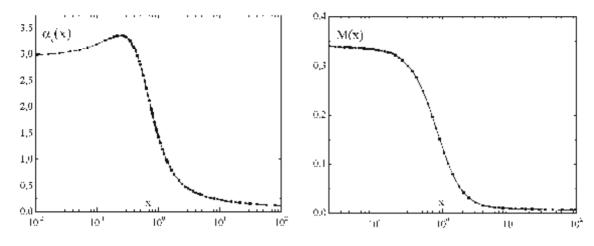


Рис. 1. Инвариантный заряд

Рис. 2. Массовая функция

Понятие динамической массы было введено в [12], где также была найдена ее связь с кварковым конденсатом $m_{\rm dyn} \propto [-<\overline{q}\;q>]^{1/3}$. Отметим, что, основываясь на уравнениях ДШ, аналогичная связь была установлена в [13]. Вопрос о калибровочной зависимости динамической массы кварка обсуждался в [14, 15]. В [15] было по-казано, что на массовой поверхности для динамической массы кварка получается калибровочно инвариантный результат

$$m^{3} = -\frac{4}{3}\pi\alpha_{s} < 0 \mid \overline{q} \mid 0 > . \tag{1}$$

Более детальный анализ этого вопроса, выполненный в [16], привел к следующему уточненному выражению для массовой функции:

$$M(p^{2}) = m \Theta(m^{2} - p^{2}) + \frac{m^{3}}{p^{2}} \Theta(p^{2} - m^{2}),$$
 (2)

где $\Theta(x)$ –ступенчатая функция Хевисайда;

 p^2 – квадрат импульса, а масса *m* связана с кварковым конденсатом согласно (1).

График функции (2) приведен на рис. 3. Ее поведение воспроизводит основные черты массовой функции, найденной на основе решения уравнений ДШ и изображенной на рис. 2, а также на рис. 4, на котором приведены кривые, соответствующие различным точкам нормировки.

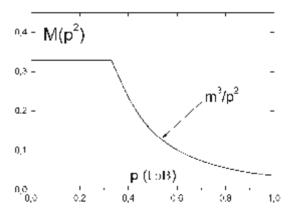


Рис. 3. Динамическая масса кварка, соответствующая выражению (2)

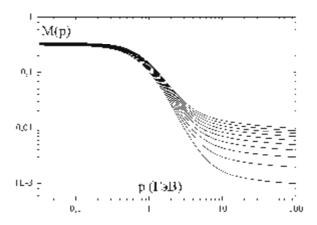


Рис. 4. Массовая функция, соответствующая решениям уравнений ДШ для различных точек нормировки

Схемы перенормировок. Получим необходимые нам правила пересчета от одной используемой схемы перенормировки к другой.

Фактор пересчета от MOM ренормализационной схемы, которая использовалась в решеточных расчетах [17], к модифицированной схеме минимальных вычитаний \overline{MS} имеет вил

$$k_{\text{MOM}\to\overline{\text{MS}}} = \exp\left(\frac{70}{3\beta_0}\right),$$
 (3)

где $\beta_0 = 11 - 2n_f/3$ — однопетлевой коэффициент ренормгрупповой β -функции, n_f — число активных кварков.

Фактор (3) регулирует импульсный масштаб и связывает масштабные параметры Λ в MOM и \overline{MS} схемах следующим образом:

$$\Lambda_{\overline{MS}}^2 = k_{MOM \to \overline{MS}}^{-1} \Lambda_{MOM}^2 . \tag{4}$$

Для суммирования пороговых сингулярностей, которое проводится в этой работе, требуется переход к V схеме [18]. Соответствующая взаимосвязь масштабных параметров имеет вид

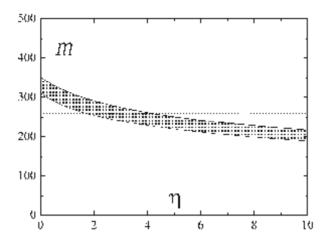
$$\Lambda_V^2 = k_{\overline{MS} \to V}^{-1} \Lambda_{\overline{MS}}^2, \qquad k_{\overline{MS} \to V} = \exp\left(-\frac{7}{\beta_0}\right). \tag{5}$$

Переход от безразмерного аргумента x, который фигурирует в решениях уравнений ДШ, к размерным физическим величинам осуществляется с помощью некоторого фактора. Такой же фактор появляется и в уравнении для полюсной массы кварка m, которая определяется как положение полюса кваркового пропагатора, и удовлетворяет уравнению

$$M_{\text{IIII}}(\eta \, m^2) - m = 0. \tag{6}$$

На рис. 5 приведен график полюсной массы кварка в зависимости от величины параметра η . Заштрихованный коридор соответствует набору кривых, изображенных на рис. 4.

Как видно из рис. 5, значение полюсной массы слабо зависит от величины параметра η . Выберем «среднее» значение полюсной массы равным 260 МэВ (пунктирная линия на рис. 5). Это значение использовалось в разных подходах, например, в работах [19, 20, 21, 22] и определялось из условия согласия результатов теоретических расчетов с соответствующими экспериментальными данными.



Puc. 5. Полюсная масса кварка m, определенная согласно (6), как функция параметра η

Для инвариантного заряда с учетом масштабного параметра η возникают следующие правила схемного пересчета:

$$\overline{\alpha}_{\text{MOM}}(Q^2) = \overline{\alpha}_{\text{IIII}}(\eta Q^2),$$
 (7)

$$\overline{\alpha}_{\overline{MS}}(Q^2) = \overline{\alpha}_{MOM}(k_{MOM \to \overline{MS}}Q^2) = \overline{\alpha}_{MUI}(\eta k_{MOM \to \overline{MS}}Q^2), \tag{8}$$

$$\overline{\alpha}_{V}(Q^{2}) = \overline{\alpha}_{\overline{MS}}(k_{\overline{MS} \to V}Q^{2}) = \overline{\alpha}_{\overline{MII}}(\eta k_{MOM \to \overline{MS}}k_{\overline{MS} \to V}Q^{2}). \tag{9}$$

Полученные выражения могут быть использованы для определения непертурбативного вклада подобно тому, как это делается при анализе результатов решеточных расчетов [17]. Выделяя в (7) обычное пертурбативное слагаемое и ведущий непертурбативный вклад в виде степенной поправки c_1/Q^2 , находим, что в результате фитирования данных, полученных на основе решения уравнений ДШ, в области 1,2 < Q < 10,0 ГэВ величина параметра составляет $c_1 \sqcup 0,51$ ГэВ 2 . Эта величина находится в согласии со значением, полученным при решеточных вычислениях: $c_1^{\text{lattice}} = 0,63_{-0.16}^{+0.03}$ ГэВ 2 [17].

R-функция. Для описания характеристик ρ - мезона в методе правил сумм КХД необходимо получить выражение для мнимой части коррелятора кварковых токов — функции R, зависящей от квадрата полной энергии s. В настоящее время для массивных кварков выражение для R(s) известно лишь в низшем порядке ТВ. Так в интересующем нас случае векторного тока пертурбативное выражение для R-функции имеет вид [23]

$$R^{\text{TB}}(s) = R_0^{\text{TB}}(s) + R_1^{\text{TB}}(s),$$
 (10)

где

$$R_0^{\text{TB}}(s) = T(v) = \frac{v(3 - v^2)}{2}, \quad R_1^{\text{TB}}(s) = \frac{\overline{\alpha}_s(s)}{\pi} T(v) g(v),$$
 (11)

$$g(v) = \frac{4\pi}{3} \left[\frac{\pi}{2v} - \frac{3+v}{4} \left(\frac{\pi}{2} - \frac{3}{4\pi} \right) \right], \quad v = \sqrt{1 - \frac{4m^2}{s}}.$$
 (12)

В низкоэнергетической области применение ТВ встречает известные трудности. Имеется также специальная проблема, связанная с пороговыми сингулярностями. Действительно, вблизи порога рождения кварковой пары нельзя ограничиться конечным порядком ТВ, так как в пертурбативном разложении участвует не просто степени α_s , а присутствуют также степени сингулярного фактора 1/v. Такие пороговые сингулярности должны быть просуммированы. Для электродинамических систем в нерелятивистском случае это суммирование осуществляет S-фактор Зоммерфельда-Сахарова [24, 25]. При описании системы легких кварков это нерелятивистское выражение неприемлемо. Релятивистское обобщение S-фактора было получено в работе [26]:

$$S(\chi) = \frac{X(\chi)}{1 - \exp[-X(\chi)]}.$$
 (13)

Здесь χ — быстрота, связанная с s соотношением $2m\cosh\chi = \sqrt{s}$, а функция $X(\chi)$ имеет вид $X(\chi) = \pi\alpha/\sinh\chi = \pi\alpha\sqrt{1-v^2}/v$, где в случае КХД $\alpha = 4\,\overline{\alpha}_s/3$. Релятивистский фактор (13) воспроизводит как известный нерелятивистский, так и ожидаемый ультрарелятивистский пределы.

Учет порогового S -фактора приводит к следующей модификации выражения для R -функции

$$R(s) = R_0(s) + R_1(s),$$
 (14)

где лидирующий «потенциальный» вклад имеет вид

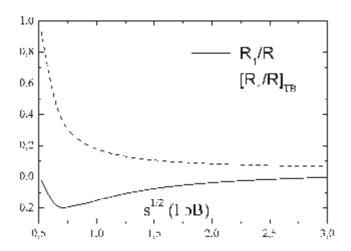
$$R_{o}(s) = T(v)S(\gamma), \tag{15}$$

а поправка равна

$$R_1(s) = T(v) \left[g(v) \frac{\overline{\alpha}_s(s)}{\pi} - \frac{1}{2} X(\chi) \right]. \tag{16}$$

Выражение (14) в пределе $m\to 0$ переходит в известную безмассовую формулу: $R(s)\to 1+\overline{\alpha}_s(s)/\pi$.

Преимущество представления (14) демонстрируется на рис. 6, на котором показан относительный вклад поправки (16) в R-функцию с учетом ресуммирующего S-фактора и без его учета в рамках ТВ. Как видно из этого рисунка, относительный вклад R_1 достаточно мал и может рассматриваться как поправка на широком энергетическом интервале. В то время как при использовании ТВ, относительный вклад $R_1^{\text{ТВ}}$ растет при уменьшении энергетического масштаба и ТВ теряет свою применимость в низкоэнергетической области.



 $Puc.\ 6.\ Относительный вклад поправки\ R_1$ в R -функцию

 ρ -мезон. Метод правил сумм КХД опирается на использование некоторого модельного выражения для R(s) в терминах адронных параметров. Так же, как и в [1,2], будем использовать

$$R^{h}(s) = \frac{2\pi}{g_{\rho}^{2}} m_{\rho}^{2} \delta(s - m_{\rho}^{2}) + \left(1 + \frac{\alpha_{s}^{(0)}}{\pi}\right) \theta(s - s_{0})$$
 (17)

с параметрами $\alpha_s^{(0)}=0,4\div0,5$ и $s_0\sqcup1,5$ ГэВ 2 . Отметим, что выражение (17) с этими параметрами хорошо воспроизводит D-функцию в векторном канале, найденную на основе экспериментальных данных по распаду τ -лептона в адроны. Экспериментальные значения параметров ρ^0 -мезона таковы: $m_\rho=775,8\pm0,5$ МэВ — масса, $g_\rho^2=2,36\pm0,16$ — величина, связанная определенным образом с электронной шириной распада [3].

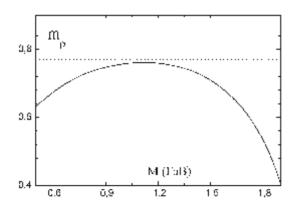
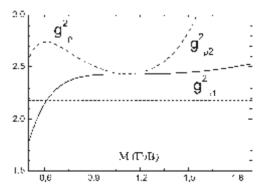


Рис. 7. Поведение $m_{\rho}(M)$, полученное на основе (21). Горизонтальная линия соответствует экспериментальному значению массы ρ -мезона



 $Puc.\ 8.\$ Функции $g_{\rho}^{2}(M)$, определенные в (22) и (23). Горизонтальные линии обозначают экспериментальный коридор

Борелевские правила сумм следуют из выражений для моментов

$$M_0(M^2) = \frac{2\pi}{g_\rho^2} m_\rho^2 \exp\left(-\frac{m_\rho^2}{M^2}\right) + \left(1 + \frac{\alpha_s}{\pi}\right) M^2 \exp\left(-\frac{s_0}{M^2}\right),\tag{18}$$

$$M_1(M^2) = \frac{2\pi}{g_{\rho}^2} m_{\rho}^4 \exp\left(-\frac{m_{\rho}^2}{M^2}\right) + \left(1 + \frac{\alpha_s}{\pi}\right) M^4 \left(1 + \frac{s_0}{M^2}\right) \exp\left(-\frac{s_0}{M^2}\right). \tag{19}$$

Моменты определены следующим образом:

$$M_k(M^2) = \int_0^\infty ds \, s^k \, \exp\left(-\frac{s}{M^2}\right) R(s), \tag{20}$$

где M есть борелевский параметр.

Из (18) и (19) находим выражение для массы ρ -мезона:

$$m_{\rho}^{2} = \frac{M_{1}(M^{2}) - (1 + \alpha_{s}/\pi)M^{4}(1 + s_{0}/M^{2})\exp(-s_{0}/M^{2})}{M_{0}(M^{2}) - (1 + \alpha_{s}/\pi)M^{2}\exp(-s_{0}/M^{2})}.$$
 (21)

Для $g_{\rho}^{2}(M)$ получаем два выражения:

$$g_{\rho 1}^{2} = \frac{2\pi \, m_{\rho}^{2} \exp\left(-m_{\rho}^{2}/M^{2}\right)}{M_{0}(M^{2}) - M^{2}\left(1 + \alpha_{s}/\pi\right) \exp\left(-s_{0}/M^{2}\right)},\tag{22}$$

$$g_{\rho 2}^{2} = \frac{2\pi \, m_{\rho}^{4} \exp\left(-m_{\rho}^{2}/M^{2}\right)}{M_{1}(M^{2}) - M^{2} \left(s_{0} + M^{2}\right) \left(1 + \alpha_{s}/\pi\right) \exp\left(-s_{0}/M^{2}\right)}.$$
 (23)

Результаты, которые получаются из выражений (21), (22) и (23), представлены на рис. 7 и 8. Значения в области стабильности таковы: $m_{\rho}=763~{\rm MeV}$ и $g_{\rho}^2=2,43$. Эти величины хорошо согласуются с приведенными выше экспериментальными данными. Таким образом, использование непертурбативных решений уравнений ДШ позволяет описать параметры ρ -мезона без явного введения глюонного и кваркового конденсатов.

Заключение. Сформулируем основные результаты, полученные в работе.

Показано, что массовая функция, возникающая в результате непертурбативного решения уравнений ДШ, приводит, с одной стороны, к величине полюсной массы кварка, близкой к конституентной, а, с другой стороны, при больших значениях импульсного аргумента становится малой, что соответствует понятию токовой массы кварка.

Предложен подход определения характеристик ρ -мезона с использованием непертурбативных решений уравнений ДШ. Показано, что развитый метод позволяет хорошо воспроизвести значения массы и электронной ширины распада ρ -мезона.

Автору приятно выразить благодарность Р. Алкоферу и К. Фишеру за полезные дискуссии и предоставленные численные результаты решения уравнений ДШ, а также сотрудникам МЦПИ и ОИЯИ за интерес к работе и полезные обсуждения.

Работа выполнена в рамках ГПФИ «Физика взаимодействий» и программы сотрудничества с Международной межправительственной организацией «Объединенный институт ядерных исследований».

Литература

- 1. Shifman M.A., Vainshtein A.I., Zakharov V.I., Nucl. Phys. B. − 1979. − Vol. 147, № 5. − P. 385-534.
- 2. Reinders L.J., Rubinstein H.R., Yazaki S., Phys. Rep. 1985. Vol. 127, № 1. P. 1-97.
- 3. Particle Data Group, Eidelman S. et al., Phys. Lett. B. 2004. Vol. 592. P. 1.
- 4. Fisher C.S., Alkofer R., Phys. Lett. B. 2002. Vol. 536, № 1-2. P. 177-184.
- 5. Bloch J.C., Phys. Rev. D. 2001. Vol. 64, № 11. Art. 116011. P. 1-11.
- 6. Fisher C.S., Alkofer R., Phys. Rev. D. 2003. Vol. 67, № 9. Art. 094020. P. 1-21.
- 7. Alkofer R., von Smekal L., Phys. Rept. 2001. Vol. 353, № 5-6. P. 281-465.
- 8. Solovtsov I.L., Phys. Lett. B. 1994. Vol. 327, № 4. P. 335-340.
- 9. Solovtsov I.L., Phys. Lett. B. 1994. Vol. 340, № 4. P. 245-249.
- 10. Shirkov D.V., Solovtsov I.L., Phys. Rev. Lett. 1997. Vol. 79, № 7. P. 1209-1212.
- 11. Соловцов, И.Л. Аналитический подход в квантовой хромодинамике /И.Л. Соловцов, Д.В. Ширков //Теоретическая и математическая физика. 1999. Т. 120, № 3. С. 482-510.
- 12. Politzer H.D., Nucl. Phys. B. 1976. Vol. 117, № 2. P. 397-406.
- 13. Красников, Н.В. Динамические массы кварков в квантовой хромодинамике /Н.В. Красников, А.А. Пивоваров //Ядерная физика. 1982. Т. 25, вып. 1. С. 55-62.
- 14. Pascual P., de Rafael E., Z. Phys. C. 1982. Vol. 12. P. 127.
- 15. Elias V., Scadron M. D., Phys. Rev. D. 1984. Vol. 30. № 3. P. 647-654.
- 16. Reinders L.J., Stam K., Phys. Lett. B. 1987. Vol. 195, № 3. P. 465-468.
- 17. Boucaud P. et al., J. High Energy Phys. 2000. Vol. 004, Art. № 006.
- 18. Fischler W., Nucl. Phys. B. 1977. Vol. 129, № 1. P. 157-174; Appelquist T., Dine M., Muzinich I.J., Phys. Lett. B. 1977. Vol. 69, № 2. P. 231-236.
- 19. Sanda A.I., Phys. Rev. Lett. 1979. Vol. 42, № 25. P. 1658-1661.
- 20. Sakurai J.J., Scilcher K., Tran M.D., Phys. Lett. B. 1981. V. 102, № 1. P. 55-58.
- 21. Сисакян, А.Н. Nonperturbative a-expansion technique and the Adler D-function /А.Н.Сисакян, И.Л. Соловцов, О.П. Соловцова (Sissakian A.N., Solovtsov I.L., Solovtsova O.P.) //Письма в ЖЭТФ. 2001. Т. 73, № 4. С. 186-189.
- 22. Milton K.A., Solovtsov I.L., Solovtsova O.P., Phys. Rev. D. 2001. Vol. 64, № 1. P. 016005-1 016005-6.
- 23. Appelquist T., Politzer H.D., Phys. Rev. Lett. 1975. Vol. 34, № 1. P. 43-45.
- 24. Sommerfeld A., Atombau und Spektrallinien. Vieweg, 1939, V. II.
- 25. Сахаров, А.Д. Взаимодействие электрона и позитрона при рождении пар /А.Д. Сахаров //ЖЭТФ. 1948. Т. 18, вып. 7/9. С. 631-635.
- 26. Milton K. A., Solovtsov I.L., Mod. Phys. Lett. A. 2001. Vol. 16, № 34. P. 2213-2219.