НЕЛИНЕЙНЫЕ ТЕПЛОВЫЕ ПРОЦЕССЫ ПРИ ИМПУЛЬСНОМ НАГРЕВЕ ДВУХСЛОЙНОЙ МЕТАЛЛИЧЕСКОЙ ПЛАСТИНЫ

О.Н. ШАБЛОВСКИЙ, Д.Г. КРОЛЬ

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Введение

Асимметричные свойства стационарных тепловых процессов изучались экспериментально на двухслойных образцах из латуни, стали, железа армко, электрокорунда [1]. Сущность явления в том, что $q_l/q_r \neq 1$, где q_l – тепловой поток, проходящий через двухслойную пластину в направлении от первого (левого) слоя ко второму (правому); q_r – тепловой поток, проходящий через пластину от второго слоя к первому. Опыты проводились в диапазоне температур от комнатной до 673 К и при разности температур на границах образца до 500 К. Максимальное значение q_l/q_r составило 1,4.

Наша цель заключается в том, чтобы исследовать: 1) явление тепловой асимметрии в нестационарных условиях; 2) энтропийные и гистерезисные свойства теплопереноса в зоне контакта слоев.

Постановка и решение задачи

Уравнение энергии и закон Фурье для теплового потока имеют вид:

$$\frac{\partial u}{\partial t} + \frac{\partial q}{\partial x} = 0, \quad q = -\frac{\partial \Lambda}{\partial x}, \quad t \ge 0;$$

$$u(T) = \int_{0}^{T} c(T) dT, \quad \Lambda(T) = \int_{0}^{T} \pi(T) dT,$$
(1)

где x – декартова координата; t – время; T – температура; q – удельный тепловой поток; л – коэффициент теплопроводности; c – объемная теплоемкость. Искомыми функциями являются температура и тепловой поток в двух контактирующих областях. Первый слой: $T = T^{(1)}(x, t)$, $q = q^{(1)}(x, t)$, $x \in [0, h_1]$. Второй слой: $T = T^{(2)}(x, t)$, $q = q^{(2)}(x, t)$, $x \in [h_1, h]$. Толщина образца равна $h = h_1 + h_2$. Условия идеального теплового контакта:

$$x = h_1, T^{(1)} = T^{(2)}, q^{(1)} = q^{(2)}.$$
 (2)

Правая граница двухслойного образца изотермическая:

$$x = h, \quad T^{(2)}(h, t) = T_w \equiv const.$$
 (3)

Тепловой поток $q_0(t)$ характеризует поверхностный источник энергии на левой границе:

$$x = 0, \quad q^{(1)}(0, t) = q_0(t).$$
 (4)

Начальная температура образца однородная по координате:

$$t = 0, \quad T(x, 0) = T^0 \equiv const,$$
 (5)

причем $T_w = T^0$.

Теплофизические свойства металлов аппроксимируются полиномами третьей степени с постоянными коэффициентами:

$$c = c_0 + c_1 T + c_2 T^2 + c_3 T^3; \ \pi = \pi_0 + \pi_1 T + \pi_2 T^2 + \pi_3 T^3, \ T \in [T', T''].$$
(6)

Процесс нагрева рассматривается в интервалах температур, для которых фазовые превращения не происходят. Построение аппроксимирующих полиномов выполняется на основе справочных данных [2].

Производство энтропии подсчитываем по формуле [3]: $y = q \frac{\partial}{\partial x} \left(\frac{1}{T} \right)$.

Изучаем важный на практике случай, когда нагрев осуществляется импульсом треугольной временной формы:

$$q_0(t) = Bt^n \exp(mt); B > 0, n > 0, m < 0; B, n, m - const.$$

Характеристики этого импульса такие:

• максимальное значение поверхностного теплового потока:

$$t = t_0, \quad q_{\max} = q_0(t_0);$$

• длительность импульса:

$$t = t_1, \quad q_0(t_1) = 0,001q_{\text{max}}.$$

Численные расчеты проводятся в безразмерных величинах. При обезразмеривании применяются масштабы величин (они отмечены нижним индексом *b*), обеспечивающие инвариантность размерной и безразмерной форм записи: $\pi_b = x_b^2 c_b/t_b$, $q_b = \pi_b T_b/x_b$ и т. д.

Решение краевой задачи (1) – (5) выполняется численным методом интегральных соотношений А.А. Дородницына. Алгоритм построения расчетной схемы подробно изложен в [4]. В *n*-м приближении область $x \in [0, h]$ разделяется на *n* полос: $x_i = ih/n$, i = 0,1,...,n. В данной задаче n = 10; берем по 5 полос в каждом слое. Строим замкнутую систему интегральных соотношений и редуцируем их к аппроксимирующей системе обыкновенных дифференциальных уравнений. Итоговая задача Коши решается методом Рунге-Кутта пятого порядка точности. В результате получаем температуру $T(x_i, t)$ и тепловой поток $q(x_i, t)$ на границах полос.

Результаты и обсуждение

При обработке результатов расчетов применяем следующие критерии:

- безразмерный градиент температуры $g = \frac{h}{T^0} \left(\frac{\partial T}{\partial x} \right);$
- безразмерный тепловой поток $Q = \frac{q(x, t)h}{T^0 n(T^0)};$
- безразмерное производство энтропии $S = \frac{y(x, t)}{v^0}$, $y^0 = \pi(T^0)/h^2$.

Параметры асимметрии (ПА), характеризующие тепловые свойства двухслойной пластины, такие:

- ПА температуры на левой границе $A_T^{(0)} = \frac{(T_0)_{M_1 M_2}^{\max}}{(T_0)_{M_2 M_1}^{\max}};$
- ПА температуры в зоне контакта $A_T^{(z)} = \frac{(T_z)_{M_1-M_2}^{\max}}{(T_z)_{M_2-M_1}^{\max}};$
- ПА теплового потока в зоне контакта $A_q^{(z)} = \frac{(q_z)_{M_1 M_2}^{\max}}{(q_z)_{M_2 M_1}^{\max}};$
- ПА теплового потока на правой изотермической границе $x_w = h A_q^{(w)} = \frac{(q_w)_{M_1-M_2}^{\max}}{(q_w)_{M_2-M_1}^{\max}};$
- ПА производства энтропии в зоне контакта $A_{\sigma}^{(z)} = \frac{F_{M_1-M_2}^{(g,S)}}{F_{M_2-M_1}^{(g,S)}};$
- ПА динамического теплового гистерезиса (ДТГ) в зоне контакта $A_G^{(z)} = \frac{F_{M_1-M_2}^{(g,Q)}}{F_{M_2-M_1}^{(g,Q)}}$.

Индексом z отмечены значения функций при $x = h_1$. В качестве M_1, M_2 применяем химические символы металлов; расположение индексов $M_1 - M_2$ и $M_2 - M_1$ указывает на расположение металлических слоев до и после перестановки. Полагаем, что поверхностный источник энергии всегда действует на левую границу образца. Буквами $F_{M_1-M_2}^{(g,S)}, F_{M_1-M_2}^{(g,Q)}$ и т. д. обозначаем площади петель ДТГ в плоскостях «градиент температуры – производство энтропии» и «градиент температуры – тепловой поток». При вычислении $A_T^{(0)}, A_T^{(z)}, A_q^{(z)}, A_q^{(w)}$ применяем максимальные, достигаемые в данном процессе, значения функций: $T_0 = T(0, t), T_z = T(h_1, t), q_z = q(h_1, t), q_w = q(h, t), t \in [0, t_1]$.

Асимметричные свойства теплопереноса выражены тем сильнее, чем больше ПА отличается от единицы.

Динамический тепловой гистерезис, существующий при нагреве однослойной пластины поверхностным источником энергии, изучен в работах [5, 6]. Практика наших расчетов показала, что для двухслойного образца закономерности гистерезисных процессов в основном такие же: в плоскостях (g, Q) и (g, S) петли ДТГ имеют, как правило, форму лепестка. Свойство ДТГ в локально-неравновесных условиях изучены в [7].

Температурная зависимость $\lambda(T)$ играет ведущую роль в обнаружении явления тепловой асимметрии, поэтому рассматриваем два варианта: 1) в каждом слое dn/dT < 0; берем здесь железо и вольфрам; 2) в одном слое dn/dT < 0, а в другом dn/dT > 0; берем здесь вольфрам и ванадий. Построение аппроксимирующих полиномов вида (6) выполняем в следующих температурных интервалах: Fe – [300, 1040]; W – [300, 3600]; V – [300, 2000]; значения температуры указаны в кельвинах. При подсчете Q, Sприменяем $n(T^0) = n_w(T^0)$.

Для каждой пары металлов приведем результаты двух серий расчетов: 1) теплообмен при перестановке металлов, когда в каждом варианте толщины слоев зафиксированы и не переставляются (табл. 1 и 3); 2) теплообмен при перестановке металлических слоев разной толщины (табл. 2 и 4).

Во всех рассмотренных вариантах $T_b = 100 \text{ K}$, $T_w = 300 \text{ K}$; $\pi_b = 100 \text{ Bt/(м·K)}$, $q_b = 1.10^6 \text{ Bt/m}^2$.

Система Fe – W

Обсудим табл. 1. Здесь $t_0 = 0,3$ с, $t_1 = 1,245$ с. На левой границе образца наблюдается асимметрия температуры (см. $A_T^{(0)}$), причем имеется слабовыраженный максимум при $h_2/h_1 \approx 0,82$. В зоне контакта хорошо видна асимметрия температуры и теплового потока. По мере роста толщины первого слоя имеем: параметр $A_T^{(z)}$ меняется немонотонно, имеет минимум при $h_2/h_1 \approx 0,82$; параметр $A_q^{(z)}$ имеет два участка монотонного убывания, а между ними находится «полочка»: участок насыщения, $h_2/h_1 \in (1,85; 0,42)$. Очень хорошо выражена асимметрия теплового потока на правой границе; важная характерная особенность: при $h_2 \approx h_1$ получаем $A_q^{(w)} \approx 1$. В зоне контакта асимметрия энтропийных и гистерезисных процессов весьма чувствительно реагирует на отношение толщин h_2/h_1 ; во всех представленных вариантах $A_v^{(z)} < 1$, $A_G^{(z)} < 1$.

Таблица 1

N⁰	$h_1 \cdot 10^2$,	h_{2}/h_{1}	$(T_0)_{W-Fe}^{\max}$	$A_T^{(0)}$	$(T_z)_{W-Fe}^{\max}$	$A_T^{(z)}$	$A_q^{(z)}$	$A_q^{(w)}$	$A_{\sigma}^{(z)}$	$A_G^{(z)}$
	М									
1	0,10	9,000	9,148	1,0272	8,306	0,821	0,8691	2,3516	0,5728	0,4804
2	0,15	5,667	8,926	1,0855	7,756	0,810	0,8037	2,1570	0,4477	0,3608
3	0,20	4,000	8,751	1,1258	7,295	0,799	0,7495	1,9657	0,3474	0,3062
4	0,25	3,000	8,618	1,1529	6,908	0,789	0,7070	1,7897	0,2901	0,2603
5	0,30	2,333	8,522	1,1709	6,579	0,779	0,6754	1,6259	0,2251	0,2212
6	0,35	1,857	8,45	1,1830	6,287	0,770	0,6520	1,4743	0,1747	0,1744
7	0,40	1,500	8,402	1,1907	6,032	0,761	0,6372	1,3377	0,1387	0,1342
8	0,45	1,222	8,366	1,1957	5,801	0,753	0,6300	1,2101	0,1084	0,0999
9	0,50	1,000	8,34	1,1986	5,586	0,747	0,6303	1,0937	0,0838	0,0808
10	0,55	0,818	8,324	1,1992	5,382	0,742	0,6358	0,9869	0,0643	0,0647
11	0,60	0,667	8,312	1,1992	5,181	0,741	0,6421	0,8883	0,0486	0,0566
12	0,65	0,538	8,305	1,1982	4,976	0,742	0,6434	0,8013	0,0339	0,0419
13	0,70	0,429	8,302	1,1962	4,762	0,748	0,6340	0,7192	0,0241	0,0319
14	0,75	0,333	8,303	1,1946	4,534	0,760	0,6075	0,6462	0,0138	0,0327
15	0,80	0,250	8,306	1,1913	4,285	0,779	0,5642	0,5788	0,0090	0,0359
16	0,85	0,176	8,312	1,1874	4,012	0,808	0,5120	0,5154	0,0029	0,0581
17	0.90	0.111	8.319	1.1837	3.709	0.850	0.4155	0.4613	0.0024	0.0699

Влияние перестановки металлов ($M_1 = \text{Fe}, M_2 = W$) на ПА при фиксированных в каждом варианте толщинах слоев, $q_{\text{max}} = 1,91 \cdot 10^7 \text{ Br/m}^2$

В табл. 2 приняты q_{max} , t_0 , t_1 такие же, как в табл. 1. Здесь мы наблюдаем серьезные отличия от первой серии расчетов. А именно: существует такое отношение толщин $(h_2/h_1)_* \approx 2,3$, при котором асимметрия проявляется незначительно. По обе стороны от $(h_2/h_1)_*$ асимметрия в зоне контакта резко возрастает. Важное отличие от результатов в табл. 1: здесь для всех рассмотренных вариантов получается $A_q^{(w)} \approx 1$.

Таблица 2

Влияние перестановки металлических слоев разной толщины на ПА ($M_1 = {
m Fe}, \ M_2 = {
m W}$)

N⁰	$h_1 \cdot 10^2$,	h_{2}/h_{1}	$(T_0)_{W-Fe}^{\max}$	$A_{T}^{(0)}$	$(T_z)_{\rm W-Fe}^{\rm max}$	$A_T^{(z)}$	$A_q^{(z)}$	$A_q^{(w)}$	$A_{\sigma}^{(z)}$	$A_G^{(z)}$
	М									
1	0,10	9,000	8,319	1,1296	3,709	1,839	2,2841	1,0569	513,133	231,486

2	0.15	5 667	8 312	1 1657	4 012	1 566	1 9846	1 0744	83 4220	78 5946
- 3	0.20	1 000	8 306	1 1861	1 285	1 361	1 7301	1,0711	23 6645	18 8155
5	0,20	4,000	8,300	1,1001	4,205	1,501	1,7501	1,0001	25,0045	10,0155
4	0,25	3,000	8,303	1,1967	4,534	1,202	1,4977	1,0938	8,33676	6,77905
5	0,30	2,333	8,302	1,2019	4,762	1,076	1,2762	1,0957	3,08916	2,71182
6	0,35	1,857	8,305	1,2036	4,976	0,972	1,0709	1,0984	1,21880	1,03748
7	0,40	1,500	8,312	1,2036	5,181	0,886	0,8944	1,0971	0,49535	0,49169
8	0,45	1,222	8,324	1,2017	5,382	0,812	0,7481	1,0962	0,20371	0,18044
9	0,50	1,000	8,34	1,1986	5,586	0,747	0,6303	1,0937	0,08376	0,08081
10	0,55	0,818	8,366	1,1932	5,801	0,689	0,5354	1,0895	0,03424	0,03584
11	0,60	0,667	8,402	1,1864	6,032	0,636	0,4575	1,0832	0,01360	0,01543
12	0,65	0,538	8,45	1,1776	6,287	0,587	0,3917	1,0755	0,00486	0,00704
13	0,70	0,429	8,522	1,1653	6,579	0,542	0,3355	1,0672	0,00175	0,00260
14	0,75	0,333	8,618	1,1510	6,908	0,499	0,2868	1,0572	0,00048	0,00125
15	0,80	0,250	8,751	1,1307	7,295	0,458	0,2444	1,0486	0,00013	0,00058
16	0,85	0,176	8,926	1,1058	7,756	0,418	0,2073	1,0348	0,00002	0,00026
17	0,90	0,111	9,148	1,0764	8,306	0,380	0,1581	1,0264	0,00001	0,00014

Итак, если dn/dT < 0 в обоих слоях металлов, то асимметрия теплопереноса сосредоточена, в основном, в зоне контакта слоев.

Система W-V

Таблица 3 составлена при $t_0 = 0,3$ с, $t_1 = 1,245$ с. На левой границе присутствует асимметрия температуры, причем $A_T^{(0)}$ мало реагирует на убывание h_2/h_1 . Параметр $A_T^{(z)}$ достигает максимума при $h_2/h_1 \approx 0,333$. Своеобразие теплового взаимодействия слоев проявляется здесь в хорошо выраженной асимметрии тепловых потоков и в зоне контакта, и на правой границе. Обращают на себя внимание очень широкие интервалы, в которых изменяются параметры $A_v^{(z)}$, $A_G^{(z)}$.

Таблица 3

Влияние перестановки металлов ($M_1 = W$, $M_2 = V$) на ПА при фиксированных в каждом варианте толщинах слоев, $q_{\text{max}} = 3,97 \cdot 10^7 \text{ Bt/m}^2$

N⁰	$h_1 \cdot 10^2$,	h_{2}/h_{1}	$(T_0)_{W-V}^{\max}$	$A_{T}^{(0)}$	$(T_z)_{W-V}^{\max}$	$A_T^{(z)}$	$A_q^{(z)}$	$A_q^{(w)}$	$A^{(z)}_{\sigma}$	$A_G^{(z)}$
	М						-	-		
1	0,10	9,000	18,307	1,0424	16,267	1,374	0,9508	0,2755	0,5110	0,841
2	0,15	5,667	17,566	0,9382	14,845	1,387	0,9527	0,2896	0,5297	1,024
3	0,20	4,000	16,905	0,8703	13,652	1,413	0,9664	0,2996	0,6259	1,216
4	0,25	3,000	16,332	0,8265	12,642	1,450	0,9987	0,3214	0,7461	1,341
5	0,30	2,333	15,856	0,7956	11,784	1,498	1,0416	0,3467	0,9317	1,695
6	0,35	1,857	15,482	0,7746	11,051	1,553	1,0878	0,3857	1,1591	2,495
7	0,40	1,500	15,185	0,7593	10,412	1,613	1,1338	0,4272	1,5650	2,953
8	0,45	1,222	14,935	0,7473	9,858	1,677	1,1770	0,4817	2,0727	4,885
9	0,50	1,000	14,756	0,7392	9,367	1,745	1,2082	0,5501	2,9755	6,498
10	0,55	0,818	14,687	0,7362	8,931	1,811	1,2313	0,6317	4,4729	10,829

11	0,60	0,667	14,623	0,7339	8,517	1,871	1,2462	0,7307	6,8508	13,942
12	0,65	0,538	14,571	0,7324	8,115	1,920	1,2656	0,8553	11,4493	27,155
13	0,70	0,429	14,543	0,7321	7,702	1,949	1,2954	1,0070	21,6832	34,583
14	0,75	0,333	14,517	0,7314	7,261	1,953	1,3711	1,1935	56,1982	43,280
15	0,80	0,250	14,498	0,7316	6,768	1,922	1,5241	1,4486	80,5036	82,689
16	0,85	0,176	14,514	0,7356	6,187	1,843	1,7885	1,7700	108,324	94,639
17	0,90	0,111	14,519	0,7397	5,476	1,701	2,1991	2,1795	161,338	100,32

Таблица 4

Влияние перестановки металлических слоев разной толщины на ПА

№	$h_1 \cdot 10^2$,	h_{2}/h_{1}	$(T_0)_{\rm W-V}^{\rm max}$	$A_T^{(0)}$	$(T_z)_{\rm W-V}^{\rm max}$	$A_T^{(z)}$	$A_q^{(z)}$	$A_q^{(w)}$	$A_{\sigma}^{(z)}$	$A_G^{(z)}$
	М									
1	0,10	9,000	18,307	0,9327	16,267	5,052	7,8174	0,9235	34385,3	35905
2	0,15	5,667	17,566	0,8903	14,845	4,422	6,1095	0,8596	9193,2	10725
3	0,20	4,000	16,905	0,8531	13,652	3,877	4,7593	0,7861	3251,81	3455,6
4	0,25	3,000	16,332	0,8229	12,642	3,401	3,7366	0,7297	1163,11	926,43
5	0,30	2,333	15,856	0,7982	11,784	2,982	2,9533	0,6742	237,654	369,79
6	0,35	1,857	15,482	0,7781	11,051	2,614	2,3590	0,6405	67,0655	152,35
7	0,40	1,500	15,185	0,7621	10,412	2,287	1,8877	0,5998	22,1829	41,778
8	0,45	1,222	14,935	0,7486	9,858	1,999	1,5150	0,5725	7,9199	20,285
9	0,50	1,000	14,756	0,7392	9,367	1,745	1,2082	0,5501	2,97548	6,4981
10	0,55	0,818	14,687	0,7349	8,931	1,519	0,9566	0,5315	1,17056	2,6077
11	0,60	0,667	14,623	0,7312	8,517	1,319	0,7485	0,5204	0,48332	0,9853
12	0,65	0,538	14,571	0,7290	8,115	1,140	0,5836	0,5151	0,19787	0,4446
13	0,70	0,429	14,543	0,7297	7,702	0,979	0,4569	0,5179	0,08500	0,1585
14	0,75	0,333	14,517	0,7346	7,261	0,833	0,3665	0,5257	0,03605	0,0626
15	0,80	0,250	14,498	0,7464	6,768	0,700	0,3095	0,5521	0,01549	0,0291
16	0,85	0,176	14,514	0,7752	6,187	0,578	0,2789	0,5963	0,00624	0,0090
17	0,90	0,111	14,519	0,8267	5,476	0,463	0,2675	0,6502	0,00239	0,0023

 $(M_1 = W, M_2 = V)$

В табл. 4 свойства поверхностного источника $q_0(t)$ такие же, как в табл. 3. В этой серии расчетов наблюдаем отчетливое влияние конкуренции знаков производных $(dn/dT)_W < 0$, $(dn/dT)_V > 0$. Параметр $A_T^{(0)}$ имеет минимум при $h_2/h_1 \approx 0,667$. На границе слоев: $A_T^{(z)} > 1$ при $h_2/h_1 > 1$, $A_T^{(z)} < 1$ при $h_2/h_1 < 1$. Наиболее выразительным является поведение $A_q^{(z)}$ в зоне контакта: при $h_2/h_1 \approx 1$ имеем $A_q^{(z)} \approx 1$; по обе стороны этого «порога» асимметрия теплового потока резко растет. Параметр $A_q^{(w)}$ принимает минимальное значение при $h_2/h_1 \approx 0,538$. Асимметрия гистерезисных процессов проявляется в количественном отношении еще резче, чем для системы Fe – W.

Выводы

Основными факторами влияния на асимметрию тепловых процессов являются знаки производных $(dn/dT)_{M_1}$ и $(dn/dT)_{M_2}$, а также отношение толщин слоев h_2/h_1 .

Гистерезисные процессы в зоне контакта слоев наиболее чувствительным образом реагируют на изменение основных параметров процесса поверхностного нагрева.

Литература

1. Gogol W. Eksperymentalne badania efektu asymetrii przewodzenia ciepla w ukladach dwuskladnikowych // Arch. termodyn. 1984. V. 5. № 3-4. P. 289.

- 2. Зиновьев, В.Е. Теплофизические свойства металлов при высоких температурах /В.Е. Зиновьев. М.: Металлургия, 1989.
- 3. Беккер, Р. Теория теплоты /Р. Беккер. М.: Энергия, 1974.
- Шабловский, О.Н. Численное решение задач нестационарного нагрева металлов: сб. науч. тр. Ин-та математики НАН Украины /О.Н. Шабловский, Д.Г. Кроль. – Киев, 1998. – С. 234.
- 5. Шабловский, О.Н. Импульсный нагрев металла в широком интервале температур /О.Н. Шабловский, Д.Г. Кроль, И.А. Концевой //Машиностроение. Минск. 2002. Вып. 18. С. 516-520.
- 6. Шабловский, О.Н. Динамический тепловой гистерезис в металлах /О.Н. Шабловский, И.А. Концевой //Материалы, технологии, инструменты. 2004. Т. 9, № 1. С. 25-29.
- 7. Шабловский, О.Н. Релаксационный теплоперенос в нелинейных средах /О.Н. Шабловский. Гомель: ГГТУ им. П.О. Сухого, 2003. 382 с.

Получено 27.07.2004 г.