ЭНЕРГЕТИКА И ТЕПЛОЭНЕРГЕТИКА

УДК 621.314.2

СИНТЕЗ ФИЛЬТРА, ОБЕСПЕЧИВАЮЩЕГО МОНОТОННЫЙ ПЕРЕХОДНОЙ ПРОЦЕСС В УСТРОЙСТВЕ ЗАЩИТЫ ОТ ПЕРЕНАПРЯЖЕНИЙ

В.И. ЛУКОВНИКОВ, С.Н. КУХАРЕНКО, Д.В. ШЕРЕМЕТЬЕВ

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Введение

В работе [1] осуществлен синтез защитного фильтра, установленного между ограничителем напряжения и активным полупроводниковым преобразователем.

На основе распределения корней характеристического уравнения по Ньютону был получен переходной процесс с небольшим перерегулированием (22 %), но из за особенностей схемной реализации фильтра обеспечить монотонность процесса не удалось.

Цель работы

Разработать методику синтеза фильтра устройства защиты от перенапряжений, формирующего монотонный переходной процесс.

Метод достижения цели

При разработке методики использовались необходимые и достаточные условия обеспечения монотонности переходных процессов в системах автоматического регулирования, полученные 3.Ш. Блохом [2, 3].

1. Условия получения монотонного переходного процесса защитного фильтра

Схема исследуемого фильтра, описанного в работе [1], представлена на рис. 1а, где обозначено:

 u_1, u_2 — входные и выходные напряжения;

 i_1 , i_2 , i_3 — токи в ветвях схемы;

 L_1 , L_3 , C_2 , C_3 , R_3 – индуктивности, емкости и активное сопротивление фильтра;

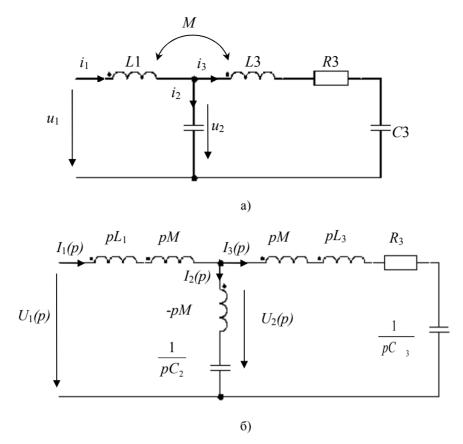
M — взаимная индуктивность.

По законам Кирхгофа можно найти операторное изображение выходного напряжения

 $U_2(p)$ (рис. 1б) для скачка входного сигнала, когда $U_1(p) = \frac{U_0}{p}$, в виде

$$U_{2}(p) = \frac{U_{0}}{p} \times \frac{(1 - MC_{2}p^{2})[p^{2}C_{3}(M + L_{3}) + R_{3}C_{3}p + 1]}{p^{4}C_{2}C_{3}(L_{1}L_{3} - M^{2}) + p^{3}R_{3}C_{3}C_{2}L_{1} + p^{2}[C_{2}L_{1} + C_{3}(L_{1} + L_{3} + 2M)] + pR_{3}C_{3} + 1} . (1)$$

Возможность осуществления монотонного переходного процесса существенно зависит от установившегося значения и начальных условий по выходному сигналу и его производным до n-1 порядка.



 $Puc.\ 1.$ Электрическая схема защитного фильтра для мгновенных значений токов и напряжений (a) и эквивалентная ей операторная схема для нулевых по законам коммутации начальных условий

Особенностью схемы фильтра является то, что его структура меняется в зависимости от величин i_1 и $\frac{di_1}{dt}$.

Действительно, в начальный момент времени t=+0 сразу после скачка $u_1(t)=U_0\cdot 1(t)$ по закону коммутации ток i_1 (+0) = 0 и магнитная связь отсутствует, а в конце переходного процесса при $t=\infty$ ток $i_1=I-$ const и $\frac{di_1}{dt}(\infty)=0$ — магнитная связь есть, но по закону Фарадея ЭДС в ветви с L_3 не наводится.

Значит для определения начальных условий и установившегося значения в выражении (1) следует положить M=0.

В этом случае установившееся значение

$$u_2(\infty) = \lim_{p \to 0} [pU_2(p)] = U_0,$$
 (2)

а начальные значения

$$\begin{split} u_2(+\,0) &= \lim_{p\to\infty} [pU_2(p)] = 0 \;, \\ \dot{u}_2(+\,0) &= \lim_{p\to\infty} [pU_2(p) - pU_2(+\,0)] = 0 \;, \\ \ddot{u}_2(+\,0) &= \lim_{p\to\infty} \Big[p^3 U_2(p) - p^2 U_2(+\,0) - p\dot{U}_2(+\,0) \Big] = \frac{U_0}{C_2 L_1} \;, \end{split}$$

$$\ddot{u}_{2}(+0) = \lim_{p \to \infty} \left[p^{4}U_{2}(p) - p^{3}U_{2}(+0) - p^{2}\dot{U}_{2}(+0) - p\ddot{U}_{2}(+0) \right] = 0.$$
 (3)

Полученные выражения полностью совпадают с расчетом схемы на рис. 16 при M=0 по законам коммутации и Кирхгофа для начальных и установившихся значений переменных.

С целью использования результатов 3.Ш. Блоха, изменим начало отсчета введением новой переменной $\Psi = U_0 - u_2$, для которой согласно [2, 3]

$$\Psi(+0) = U_0 - u_2(+0) = U_0,$$

$$\dot{\Psi}(+0) = -\dot{u}_2(+0) = 0,$$

$$\ddot{\Psi}(+0) = -\ddot{u}_2(+0) = -\frac{U_0}{C_2 L_1},$$

$$\ddot{\Psi}(+0) = -\dot{u}_2(+0) = 0.$$

При полученных значениях начальных условий для обеспечения монотонности переходного процесса необходимо и достаточно, чтобы коэффициент первой составляющей переходного процесса был положителен [3]. Это условие запишется в этом случае как

$$A_{1} = \frac{p_{2}p_{3}p_{4} + \Psi(+0)}{(p_{2} - p_{1})(p_{3} - p_{1})(p_{4} - p_{1})} \ge 0,$$

$$(4)$$

где p_1, p_2, p_3, p_4 – корни характеристического уравнения (знаменатель $p = \frac{U_2(p)}{U_0}$ по (1)).

2. Методика синтеза защитного фильтра

В основу методики синтеза положим желаемое распределение корней характеристического уравнения, обеспечивающее выполнение условия монотонности (4) через параметры фильтра.

С этой целью проанализируем характеристическое уравнение:

$$C_2C_3(L_1L_3-M^2)p^4+R_3C_3C_2L_1p^3+[C_2L_1+C_3(L_1+L_3+2M)]p^2+R_3C_3p+1=0.$$
 (5)

Введем коэффициент нормирования Вышнеградского

$$K_B = \sqrt[4]{\frac{1}{C_2 C_3 (L_1 L_3 - M^2)}} \tag{6}$$

и подстановкой $p = K_B \lambda$ получим нормированное характеристическое уравнение

$$\lambda^4 + \alpha_1 \lambda^3 + \alpha_2 \lambda^2 + \alpha_3 \lambda + 1 = 0, \qquad (7)$$

где коэффициенты

$$\begin{cases}
\alpha_{1} = \frac{R_{3}C_{3}C_{2}L_{1}}{\sqrt[4]{\left[C_{2}C_{3}\left(L_{1}L_{3}-M^{2}\right)\right]^{3}}} \\
\alpha_{2} = \frac{C_{2}L_{1}+C_{3}\left(L_{1}+L_{2}+2M\right)}{\sqrt[4]{\left[C_{2}C_{3}\left(L_{1}L_{3}-M^{2}\right)\right]^{2}}} \\
\alpha_{3} = \frac{R_{3}C_{3}}{\sqrt[4]{C_{2}C_{3}\left(L_{1}L_{3}-M^{2}\right)}}
\end{cases} (8)$$

Теперь условие монотонности (4) с учетом, что $\Psi(+0) = 0$ можно представить в виде

$$A_1 = \frac{\lambda_2 \lambda_3 \lambda_4}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_1)} \ge 0, \qquad (9)$$

где λ_1 , λ_2 , λ_3 , λ_4 – корни уравнения (7).

Полученные соотношения (8), (9) представляют собой теоретическую основу методики синтеза фильтра защиты от перенапряжений, обеспечивающего монотонный переходной процесс.

Действительно, задавая или выбирая из предлагаемых для других оптимизаций в работе [4] значения корней характеристического уравнения (7) так, чтобы выполнялось условие (9), можно рассчитать коэффициенты (8) по известным алгебраическим соотношениям [5]:

$$\alpha_{1} = -(\lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4}),$$

$$\alpha_{2} = \lambda_{1}\lambda_{2} + \lambda_{1}\lambda_{3} + \lambda_{1}\lambda_{4} + \lambda_{2}\lambda_{3} + \lambda_{2}\lambda_{4} + \lambda_{3}\lambda_{4},$$

$$\alpha_{3} = -(\lambda_{1}\lambda_{2}\lambda_{3} + \lambda_{1}\lambda_{2}\lambda_{4} + \lambda_{1}\lambda_{3}\lambda_{4} + \lambda_{2}\lambda_{3}\lambda_{4}).$$
(10)

После этого, составляя систему уравнений по (8), получаем возможность определения параметров фильтра.

Уточним только, что для выполнения (9) необходимо, чтобы λ_1 была наименьшей величиной по сравнению с λ_2 , λ_3 , λ_4 , а согласно [5] в дополнение к (10) необходимо, чтобы $\lambda_1\lambda_2\lambda_3\lambda_4=1$.

Кроме того, укажем, что в предельном случае M=0 (отсутствие магнитной связи в реализации фильтра) можно пользоваться соотношением (6) и (8), а при $M=\sqrt{L_1L_3}$ (идеальная магнитная связь) необходимо учесть, что в уравнении (1) исчезает член $p^4C_2C_3(L_1L_3-M^2)=0$ и хотя начальные условия не изменяются, но уравнение (7) становится другим

$$\lambda^3 + \alpha_1 \lambda^2 + \alpha_2 \lambda + 1 = 0, \qquad (11)$$

$$\begin{cases}
\alpha_{1} = \frac{L_{1}C_{2} + C_{3}(L_{1} + L_{3} + 2\sqrt{L_{1}L_{3}})}{\sqrt[3]{(R_{3}C_{3}L_{1}C_{2})^{2}}} \\
\alpha_{2} = \frac{R_{3}C_{3}}{\sqrt[3]{R_{3}C_{3}L_{1}C_{2}}}
\end{cases} (12)$$

При этом и коэффициент нормирования Вышнеградского другой:

$$K_B = \sqrt[3]{\frac{1}{R_3 C_3 L_1 C_2}} \ . \tag{13}$$

Условие (9) также другое:

$$A_1 = \frac{\lambda_2 \lambda_3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)}. (14)$$

3. Численная проверка полученных результатов

В работе [1] исследовался вариант реализации фильтра с идеальной магнитной связью. С целью сравнительной оценки полученных рекомендаций рассмотрим тот же вариант и в этой статье.

В отличие от общепринятого распределения корней характеристического уравнения по Ньютону, когда $\lambda_1 = \lambda_2 = \lambda_3 = 1$, примем, что $\lambda_1 = 0.8$; $\lambda_2 = 1.0$; $\lambda_3 = 1.25$.

В этом случае условия $\lambda_1\lambda_2\lambda_3=0.8\cdot 1.0\cdot 1.25=1$ и $A_1=\frac{1.0\cdot 1.25}{\left(1.0-0.8\right)\left(1.25-0.8\right)}=13.89\geq 0$ выполняются.

Для исходного уравнения корни будут равны $p_1 = K_B \lambda_1 = -0.8 K_B$, $p_2 = -1.0 K_B$, $p_3 = -1.25 K_B$ и выражение для переходного процесса с учетом обратного перехода к исходному началу отсчета примет вид:

$$U_2(t) = U_0 - \Psi(t) = U_0 \left(1 - A_1 e^{-0.8K_B t} - A_2 e^{-1.0K_B t} - A_3 e^{-1.25K_B t}\right)$$

В относительных величинах $U_2^0 = \frac{U_2}{U_0}$, $\tau = K_B t$ это можно записать проще:

$$U_2^0(t) = 1 - A_1 e^{-0.8\tau} - A_2 e^{-\tau} - A_3 e^{-1.25\tau}.$$
 (15)

Для принятых значений корней получим согласно [3]:

$$A_2 = \frac{\lambda_1 \lambda_3}{(\lambda_1 - \lambda_2)(\lambda_3 - \lambda_2)} = \frac{0.8 \cdot 1.25}{(0.8 - 1)(1.25 - 1)} = -20.0,$$

$$A_3 = \frac{\lambda_1 \lambda_2}{(\lambda_1 - \lambda_2)(\lambda_2 - \lambda_3)} = \frac{0.8 \cdot 1.0}{(0.8 - 1.25)(1.0 - 1.25)} = 7.111.$$

Тогда в численных значениях переходная характеристика (15) будет записана так:

$$U_2^0(\tau) = 1 - 13,89e^{-0.8\tau} + 20,0e^{-\tau} - 7,111e^{-1.25\tau}.$$
 (16)

На рис. 2 представлены графики характеристик, полученных в результате оптимизации и найденных в работе [1]. Видно, что удалось обеспечить монотонность переходного процесса.

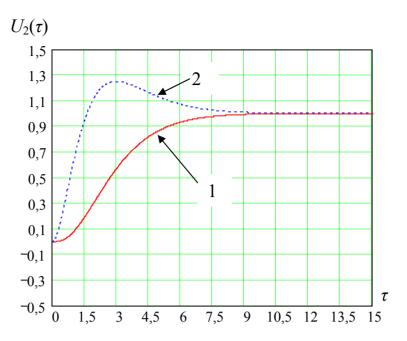


Рис. 2. Переходные процессы: 1 - построенный по выражению (16) - монотонный и 2 - по выражению (8) работы [1] - с перерегулированием

Заключение

Полученные соотношения (8)–(10) позволяют синтезировать фильтр устройства защиты от перенапряжений, обеспечивающий монотонный переходной процесс.

Литература

- 1. Луковников, В.И. Синтез устройств защиты от перенапряжений полупроводниковых преобразователей троллейбусного оборудования /В.И. Луковников, С.Н. Кухаренко, Д.В. Шереметьев //Перенапряжения и надежность эксплуатации оборудования: Материалы МНТК, 5–9 апреля 2004 г. Вып. 3. Мн.: Изд-во ПЭИПК; СПб., 2004 С. 162-168.
- 2. Блох, З.Ш. Динамика линейных систем автоматического регулирования машин /З.Ш. Блох. М.: Гостехиздат, 1952. 491 с.
- 3. Блох, 3.Ш. Переходные процессы в линейных системах автоматического регулирования /3.Ш. Блох М.: Физматгиз, 1961. 491 с.
- 4. Яворский, В.Н. Проектирование нелинейных следящих систем /В.Н. Яворский, В.И. Машканов, В.П. Ермоленко. Л.: Энергия, 1978 207 с.
- 5. Воеводин, В.В. Линейная алгебра /В.В. Воеводин. M: Hayкa, 1980. 348 c.

Получено 28.07.2004 г.