## О ДВУХ МЕТОДАХ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА РАССЕИВАНИЯ ЭНЕРГИИ В ГИДРАВЛИЧЕСКОМ ЦИЛИНДРЕ ИСПЫТАТЕЛЬНОЙ МАШИНЫ

А.С. Шагинян, Д.Н. Андрианов, В.В. Болотский

Гомельский политехнический институт им. П.О. Сухого, Беларусь

Цель исследований. При исследовании динамических свойств систем с гидравлическим или электрогидравлическим приводом с учетом сжимаемости жидкости, в частности испытательных машин с гидравлическим и электрогидравлическим приводом, всякий раз возникает вопрос об определении коэффициента рассеивания энергии рабочего органа системы. В испытательной машине таким органом является гидравлический цилиндр. Аналитическое решение этого вопроса достаточно сложно, так как естественное рассеивание энергии высокочастотных колебаний рабочего органа на масляной «подушке» происходит по нескольким каналам. В настоящее время обычно учитываются только две составляющие - сухое и вязкое трение в подвижных частях испытательной машины. [ 1 ] Но в зависимости от конструкции в каждой системе превали-

рует тот или иной вид поглощения энергии. Целью данных исследований является экспериментальное определение коэффициента рассеивания энергии в гидроцилиндре универсальной и разрывной испытательной машины. Объектом данных исследований служит испытательная машина ИР-6054-200 производства Армавирского ПО «Точмашприбор» (Россия).

Методика проведения эксперимента. Подвижные части испытательной машины, в процессе проведения эксперимента находящиеся на слое рабочей жидкости, рассматриваются как колебательное звено. При проведении статических испытаний металлов на растяжение по ГОСТ 1497-84 скорость движения активного захвата  $v_{a,3}$ . должна находится в пределах от 0 до  $3.5\cdot10^4$  м/с. Для указанного диапазона скоростей может быть принята линейная зависимость между силой сопротивления движению активного захвата  $P_c$  и его скоростью  $v_{a,3}$ .

$$P_c = \alpha_c \cdot v_{a,3} \tag{1}$$

где:  $\alpha_c$  - коэффициент рассеивания энергии в грузовом цилиндре испытательной машины.  $\left\lceil \frac{H \cdot c}{M} \right\rceil$ 

Схема экспериментальной установки представлена на рис. 1. Сила сопротивления  $P_c$  определяется следующим соотношением:

$$P_c = g \cdot m_n \tag{2}$$

где: g - ускорение свободного падения;  $\left[\frac{M}{c^2}\right]$ ;  $m_n$  - масса подвижных частей машины (плунжеров гидроцилиндров, верхней траверсы и активного захвата) и накладных грузов. [кг]

В качестве накладных грузов использовались противовесы развесом 50±0,2 кг. Вес подвижных частей машины – 342кг. При проведении эксперимента в качестве рабочей жидкости использовалось масло МС-20 по ГОСТ 21743-76. Были приняты меры к сохранению постоянного температурного режима.

В процессе проведения эксперимента подвижные части машины гидроприводом испытательной машины поднимались на высоту ≈200 мм. После этого перекрывался кран 1 и отключался гидропривод. Затем открывались краны 2, связанные со сливом, и подвижные части испытательной машины под своим весом и весом накладных грузов начинали опускаться. В процессе эксперимента замерялась скорость, как время прохождения 100 мм по тензометру 3. Первоначально подвижные части машины выводились несколько выше тензометра 3, чтобы исключить момент разгона. Вес перемещаемых грузов изменялся ступенчато с шагом 50 кг. На каждой ступени измерения проводились 4 раза. Результаты эксперимента представлены в таблице 1.

Коэффициент рассеивания энергии рассчитывался по формуле:

$$\alpha_c = \frac{P_c}{v_{\alpha,3}} \tag{3}$$

При этом сопротивлением истечению через краны 2 можно пренебречь, т.к. про-ходные сечения в сливных трубопроводах и кранах 2 весьма велики (рис. 1).

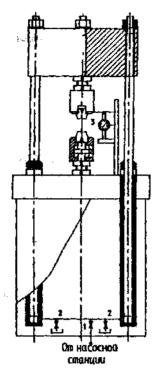



Рис. 1 Схема проведения эксперимента.

Таблина 1

| 1 a      | олица 1                                      |           |        |                         |            |
|----------|----------------------------------------------|-----------|--------|-------------------------|------------|
|          | Сила                                         | Перемеще- | Время, | Скорость,               | $\alpha_c$ |
| № пп     | $P_{c_i}H$                                   | ние, м    | C      | 1,                      | $\alpha_c$ |
| <u> </u> |                                              | · .       |        | $v_{a.3.,\mathrm{M/c}}$ | Н-с/м      |
| 1        |                                              |           | 1,92   | 0,052                   | 65769      |
| 2        | 3420                                         |           | 1,91   | 0,052                   | 65769      |
| 3        |                                              |           | 1,89   | 0,053                   | 64528      |
| 4        |                                              |           | 1,91   | 0,052                   | 65769      |
| 5        |                                              | -         | 1,70   | 0,059                   | 66400      |
| 6        | 3920                                         | M         | 1,68   | 0,060                   | 65333      |
| 7        |                                              |           | 1,69   | 0,059                   | 66440      |
| 8        | ett kat                                      | 0, 1      | 1,70   | 0,059                   | 66400      |
| 9        |                                              | 17 57     | 1,46   | 0,068                   | 65000      |
| 10       | 4420                                         | ,         | 1,46   | 0,068                   | 65000      |
| 11       |                                              |           | 1,45   | 0,069                   | 64058      |
| 12       | <u>                                     </u> |           | 1,48   | 0,067                   | 65970      |
| 13       |                                              | ·         | 1,32   | 0,076                   | 64737      |
| 14       | 4920                                         | ,         | 1,31   | 0,076                   | 64737      |
| 15       |                                              |           | 1,33   | 0,075                   | 65600      |
| 16       |                                              |           | 1,34   | 0,075                   | 65600      |

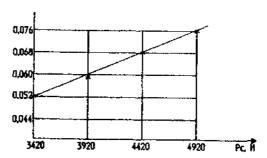



Рис. 2 График зависимости силы сопротивления от скорости движения активного захвата.

Среднее значение коэффициента рассеивания энергии:

$$\overline{\alpha}_c = \frac{1}{n} \cdot \sum_{i=1}^n \alpha_{c_i} = 65400 \frac{H \cdot c}{M} , \qquad (4)$$

где: n – количество опытов;  $\alpha_{c_i}$  - результат i-го опыта.

По итогам эксперимента был построен график функции  $v_{a,3}=f(P_c)$  . рис.2. Коэффициент рассеивания энергии в гидроцилиндре испытательной машины  $\alpha_c=65,4\cdot 10^3 \ \frac{H\cdot c}{M}$  .

Для определения коэффициента рассеивания энергии в гидроцилиндре  $\alpha_c$  для данного типа испытательной машины существует еще один способ.[3] Результаты эксперимента приведены в таблице 2.

При этом способе подвижные части машины, покоящиеся на столбе жидкости под плунжером гидроцилиндра, вводятся в свободные колебания, и коэффициент рассеивания энергии определяется по декременту затухания колебаний подвижных частей машины (рис.3):

$$\alpha_c = \frac{2\Theta\sqrt{C \cdot m_n}}{\sqrt{4\pi^2 + \Theta}} \,, \tag{5}$$

где: C — жесткость столба жидкости под плунжерами гидроцилиндра испытательной машины  $C_{\Gamma}$  и испытуемого образца  $C_{O}$ , соединенных последовательно;  $\Theta$  - декремент затухания колебаний;

| 1 | аблица | 2 |
|---|--------|---|
|   |        |   |
|   |        |   |

| п. | Высота h<br>столба жид-<br>кости под<br>плунжером, | Жесткости, Н/м х10 <sup>6</sup> |                                  |                   | Амплитуды изменения давления в гидроцилиндрах при воздействии импульса силы $P_{umn}$ , МПа |                | $\frac{\alpha_c}{\frac{H \cdot c}{10^3}}$ x |
|----|----------------------------------------------------|---------------------------------|----------------------------------|-------------------|---------------------------------------------------------------------------------------------|----------------|---------------------------------------------|
|    | M                                                  | Образца $C_O$                   | Гидравличе-<br>ская $C_{\Gamma}$ | Общая<br><i>С</i> | A                                                                                           | A <sub>I</sub> |                                             |
| 1  | 0,1                                                | 1,6                             | 7,4                              | 1,32              | 2,35                                                                                        | 1.10-4         | 58,5                                        |
| 2  | 0,2                                                | 1,6                             | 3.7                              | 1,12              | 2,73                                                                                        | 1.10           | 60,4                                        |

$$\Theta = \ln \left( \frac{A}{A_1} \right) \tag{6}$$

здесь  $A / A_I$  - отношение последовательных амплитуд колебаний.

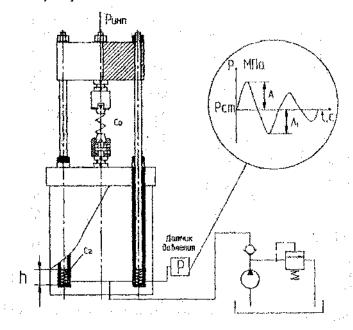



Рис. 3. Схема проведения эксперимента по второй методике. Выводы:

[.Приведенные методики экспериментального определения коэффициента рассеивания энергии в гидроцилиндре с достаточной точностью позволяют осуществить количественные оценки указанного параметра, используемого при динамических исследованиях системы « испытательная машина - образец ».

2. Полученные количественные результаты по обеим методикам хорошо согласуются друг с другом и с результатами работы [3].

## Литература:

- 1. Хохлов В.А. Электрогидравлический следящий привод.- М.: Наука, 1966.
- 2. Касандрова О.Н., Лебедев В.В. Обработка результатов наблюдений. М.: Наука, 1970.
- 3. Полозков А.А., Шагинян А.С. Методы определения диссипативности систем универсальных испытательных машин. : Сборник трудов РИСХМ . Ростов-на-Дону, 1966.