УДК 621.316

АНАЛИЗ СРАБАТЫВАНИЯ ТОКОВЫХ ЗАЩИТ ПРИ РЕЗЕРВИРОВАНИИ ЛИНИЙ 6-10 КВ

Г.Ф. КУЦЕНКО, А.А. ПАРФЁНОВ

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Для того, чтобы свести к минимуму отрицательные последствия от коротких замыканий, необходимо знать значения токов коротких замыканий в определенных точках сети. Значения этих токов используются при расчете установок аппаратов релейной защиты. Согласно Правилам устройства электроустановок (ПУЭ) в сетях напряжением 6-10 кВ на одиночных линиях с односторонним питанием от многофазных замыканий, должна устанавливаться двухступенчатая токовая защита, первая ступень которой выполнена в виде токовой отсечки, а вторая — в виде максимальной токовой защиты с независимой или зависимой характеристикой выдержки времени.

В данной работе произведен расчет токов короткого замыкания в воздушных линиях электропередачи, 6-10 кВ, в нормальном режиме и при взаимном резервировании в случае аварийного отключения питания одной из линии. Исследования проводились на примере линий 10 кВ РУП «Гомельэнерго» Гомельского РЭС (рис. 1, 2). Далее был проведен анализ срабатывания максимальной токовой защиты в нормальном и аварийном режимах. В аварийном режиме происходит резервирование одной воздушной линии другой, т. е. к линии, которая остается в работе, присоединяется аварийно отключенная линия. При этом ток в линии увеличивается на величину нагрузки присоединенной линии, коэффициент чувствительности максимальной токовой защиты может не соответствовать требуемому значению, т. е. не произойдет срабатывание защиты.

Ток срабатывания максимальной токовой защиты [1]:

$$I_{C.3.} = \frac{k_H \cdot k_{C3\Pi}}{k_B} \cdot I_{PAB.MAKC.}, \tag{1}$$

где k_H — коэффициент надежности, обеспечивающий надежное несрабатывание защиты путем учета погрешности реле с необходимым запасом, может приниматься равным 1,1-1,4 (для рассматриваемых линий k_H = 1,25, реле PT-80, по данным службы релейной защиты (CP3A); k_B — коэффициент возврата реле равен 0,6-1 (равен 0,85 для реле PT-80); $k_{C3\Pi}$ — коэффициент самозапуска, зависит от вида нагрузки и ее параметров, от схемы и параметров питающей сети, для сельскохозяйственных районов равен 1,2-1,3 (согласно данным СРЗА и [1], исключение составляют линии со значительным количеством электродвигателей: крупные птицефабрики, животноводческие комплексы и др.); $I_{PAE,MAKC}$ — максимальный рабочий ток (ток нагрузки).

Коэффициент чувствительности защиты:

$$k_{\rm q} = \frac{I_{\rm KMHH}}{I_{\rm C3}},\tag{2}$$

где $I_{K.МИН}$ — минимальный ток короткого замыкания (при двухфазном коротком замыкании). Согласно ПУЭ, для основной зоны обязательно значение $k_{Y} \ge 1,5$, для резервной 1, 2.

На рис. 1, 2 представлены воздушные линии электропередачи Гомельского РЭС. Для каждого участка линии показаны длина, марка и сечение провода, мощность трансформаторных подстанций 10/0,04 кВ, в табл. 1 представлены их характеристики. Согласно данным СРЗА, комплект токовой защиты установлен на головном выключателе линии. На рис. 1 и 2 наиболее удаленные точки для расчета тока короткого замыкания обозначены точками k.

Таблица 1 Характеристики воздушных линий электропередачи

Линия	Длина, км	Суммарная мощность подстанций, кВА	Макси- мальный рабочий ток, А	Количество взаимнорезер- вирующих линий	Ток корот- кого замы- кания в уда- ленной точ- ке, $I_{KMИH}$ A	Коэффи- циент чув- ствитель- ности, <i>ky</i>	
№ 1-г	22,5	3505	202	2	624	1,74	
№ 2	11,85	1513	87,5	2	422	1,17	
№ 3	12,48	2533	146,4	1	389	1,08	

Так, для линии № 1-г, показанной на рис. 1, ток срабатывания защиты при максимальном токе нагрузки равен:

$$I_{\rm C3} = 357.5 \text{ A}.$$

Ток двухфазного короткого замыкания в наиболее удаленной точке линии k (рис. 1):

$$I_{KMWH} = 624 \text{ A}.$$

Коэффициент чувствительности:

$$k_{\rm U} = 1.74$$
.

Как видно, коэффициент чувствительности удовлетворяет требованиям.

Рассмотрим аварийный режим, когда к линии № 1-г (рис. 1) присоединяется линия № 2 (рис. 2). В этом случае, линия № 1-г и линия № 2 будут представлять собой одну линию, и наиболее удаленная точка для расчета тока короткого замыкания будет находиться в начале линии № 2. Ток срабатывания защиты останется таким же (357,5 A), ток двухфазного короткого замыкания будет равен:

$$I_{KMUH} = 422 \text{ A}.$$

Коэффициент чувствительности в этом случае:

$$k_{\rm Y} = 1.17$$
,

что не удовлетворяет требованиям. Как видно из приведенных расчетов, в аварийном режиме не будет обеспечено надежное срабатывание токовой защиты. Как правило, все линии имеют более одной резервной связи. В рассматриваемом случае их две. Рассмотрим еще один вариант: линия № 1-г остается питающей, а к ней присоединяется линия № 3. Характеристика линии и результаты расчетов приведены в

табл. 1. Как видно, ни в первом, ни во втором случае коэффициент чувствительности не удовлетворяет требованиям как основной, так и резервной защиты. Аналогичная ситуация складывается при резервировании всех линий с длиной больше 19 км. Эти выводы подтверждают также результаты, полученные в ходе анализа срабатывания защиты на примере семи моделей ВЛ 10 кВ, построенных по результатам исследований ВЛ 6-10 кВ РУП «Гомельэнерго». Характеристики и рисунки этих моделей представлены в ранее опубликованных работах [2, 3], в табл. 2 приведены результаты анализа срабатывания релейной защиты.

 Таблица 2

 Анализ срабатывания релейной защиты при резервировании

	1															
Для модели 1	1+1															
$I_{\rm C.3} = 94 \text{ A}$																
Номер узла			2					2'				1'				
$I_{K.МИН}$, к ${f A}$			4,21			2,89						2,37				
k_{v} 44,90							30,79					25,2	1			
		13'	1					+7			1					
Номер узла			12'	11'	10'	9'	8'	7'	6'	5'	4'	3'	2'	1'		
<i>I_{К.МИН},</i> кА																
$k_{\scriptscriptstyle q}$	44,90	28,06	24,21	22,18	14,57	12,33	11,09	9,49	8,60	7,99	7,04	6,51	5,97	5,22		
Для модели 3 3+2																
$I_{C,3} = 133,5 \text{ A}$																
Номер узла	5				3'				2'			1'				
Токи к.з, кА		1,41				1,13			1,04				0,96			
$k_{\scriptscriptstyle q}$		10,5	6		8	3,48			7,80)	7,20					
3+5																
Номер узла	5		9'	8'	7		6'			4'	3'	2		1'		
$I_{K.МИН}$, к ${f A}$	_{с.мин} , кА 1,41		03	0,87	0,8				0,67 0,6		0,56	0,50		0,47		
$k_{\scriptscriptstyle q}$	10,5	6 7,	69	6,51	6,0)8	5,53	5,04	4,82		4,23	3,7	77	3,50		
	Для модели 5 5+5															
IC.3 = 190,5 A																
Номер узла	9		9'	8'	7		6'	5'		4'	3'	2		1'		
$I_{K.МИН}$, к ${f A}$	0,54		47	0,43	0,4),40	0,38		37	0,34	0,3		0,30		
$k_{\scriptscriptstyle q}$	2,84	84 2,45		2,26	2,1	,19 2,08		1,98 1,93		93	3 1,78		66	1,59		
	1	1	1	T		1	5+		1		1	1	ı	1		
Номер узла	9	13'	12'	11'	10'	9'	8'	7'	6'	5'	4'	3'	2'	1'		
$I_{K.МИН}$, к ${f A}$													_	0,27		
$k_{\scriptscriptstyle q}$	2,84 2,52 2,45 2,40		2,40	2,15						1,73 1,63 1,57 1,50 1,40						
				1			6+		1				ı			
Номер узла	7	13'	12'	11'	10'	9'	8'	7'	6'	5'	4'	3'	2'	1'		
									0,33							
$k_{\scriptscriptstyle q}$	2,78	2,43	2,37	2,33	2,10	2,00	1,93	1,82	1,75	1,70	1,61	1,55	1,49	1,39		
Для модели 7 7+1																
IC.3 = 294,4 A																
Номер узла							2'					1'				
<i>I_{К.МИН},</i> кА 0,45						0,42					0,41					
$k_{\scriptscriptstyle q}$	1,51						1,42					1,39				

Окончание табл. 2

7+4														
Номер узла	13		7'		6'		5'		4'			2'	1'	
$I_{K.МИН}$, к A	кА 0,45		0,40		0,38	0,	,38	0,36		0,35		0,34	0,31	
$k_{\scriptscriptstyle q}$	1,5	1	1,37	1,37 1,31		1,	,27	1,22		1,18		1,15	1,07	
7+7														
Номер узла	13	13'	12'	11'	10'	9'	8'	7'	6'	5'	4'	3'	2'	1'
$I_{K.МИН}$, к A	0,45	0,41	0,40	0,40	0,36	0,34	0,33	0,32	0,30	0,30	0,28	0,27	0,26	0,24
$k_{\scriptscriptstyle q}$	1,51	1,40	1,36	1,34	1,22	1,17	1,13	1,07	1,03	1,00	0,95	0,92	0,89	0,83

В табл. 2 показаны некоторые случаи резервирования воздушных линий электропередачи. Больший номер модели соответствует большей длине линии, номера узлов со штрихом относятся к резервируемой линии. Резервирование может осуществляться по всей длине линии (до узла 1') или до какого-то узла с отключением части потребителей (до узла 2', 3', 5' и т. д.). Как видно из таблицы, с увеличением длины как питающей, так и резервируемой линии, коэффициент чувствительности уменьшается. Так, при резервировании с длиной питающей и резервируемой линий до 19 км (5 модель), коэффициент чувствительности соответствует требуемому значению. В линиях с большей длиной резервирование возможно или в случае отключения части потребителей, или в случае резервной защиты. А для самых длинных линий (модель 7 — 28,3 км) резервирование возможно лишь части потребителей в случае не основной защиты. Следовательно, при проведении оперативных переключений по обеспечению бесперебойного электроснабжения потребителей и как один из критериев выбора оптимального варианта резервирования, необходимо провести анализ срабатывания релейной защиты на резервируемых линиях.

Для обеспечения надежного и селективного отключения поврежденного участка может быть использован один из следующих принципов выполнения защиты [4]: а) установка комплекта релейной защиты на секционирующих выключателях, а именно максимальной токовой направленной защиты; б) максимальная токовая защита без элемента направления, но с автоматически изменяющейся настройкой; в) делительная автоматика минимального напряжения, отключающая секционирующий выключатель в бестоковую паузу перед действием АВР.

Все эти методы требуют значительных материальных затрат, если учесть, что количество линий всего лишь в одном Гомельском РЭС около 100.

Так как все линии имеют больше одной резервной связи с другими линиями (рис. 1, 2), то мы предлагаем рассматривать различные варианты взаимного резервирования линий и выбирать тот вариант, при котором будут удовлетворяться требования срабатывания релейной защиты. Также возможен вариант, когда происходит резервирование не по всей длине линии, а лишь части, в результате, в работе остаются не все потребители. В этом случае также необходимо выбирать вариант с наименьшим количеством отключаемых потребителей.

Анализ срабатывания защиты проводился при максимально возможной нагрузке линий электропередачи. В то же время, реальная нагрузка линий, согласно данным диспетчерской службы РУП «Гомельэнерго», составляет 20-50 % от максимально возможной. Если в расчетах тока срабатывания защиты принимать реальные максимально возможные рабочие токи, то чувствительность релейной защиты будет обеспечена в большинстве случаев.

Список литературы

- 1. Шабад М.А. Расчеты релейной защиты и автоматики распределительных сетей. Л.: Энергоатомиздат, 1985.
- 2. Куценко Г.Ф., Парфенов А.А. Моделирование распределительных сетей напряжением 6-10 кВ //Энергосбережение. Электроснабжение. Автоматизация: Материалы международной научно-технической конференции (22-23 ноября 2001 г. Гомель). Учреждение образования «ГГТУ им. П.О. Сухого», 2001. С. 84-86
- 3. Куценко Г.Ф., Парфенов А.А. Исследование возможности резервирования ВЛ 6-10 кВ с учетом отклонения напряжения //Вестник ГГТУ им. П.О.Сухого. − 2003. № 1.
- 4. Шабад М.А. Автоматика электрических сетей 6-35 кВ в сельской местности. Л.: Энергия, 1979.

Получено 11.10.2002 г.