## УДК 536.2

# ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНЫХ НЕОДНОРОДНОСТЕЙ ПРИ НАГРЕВЕ МЕТАЛЛОВ

## И.А. КОНЦЕВОЙ

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

#### Введение

Уникальные физические особенности лазерного излучения обусловили его применение в различных технологических процессах обработки материалов и веществ [1]. Для теоретических и практических исследований привлекательность этого явления объясняется локальностью воздействия и возможностью высокой концентрации энергии. При импульсном нагреве металла до высокой температуры его нестационарное тепловое поле проявляет специфические черты, обусловленные высокоинтенсивным характером поверхностного энергопереноса, и в ходе своей эволюции оно может проявлять гистерезисные свойства.

В работах [2-4] для рассмотрения динамического теплового гистерезиса (ДТГ) применялась классическая модель теплопроводности Фурье. Получены сведения о том, что в плоскости «тепловой поток – градиент температуры» необходимым образом существует петля гистерезиса, если: 1) интенсивность поверхностного источника энергии  $q_0(t)$  немонотонно зависит от времени; 2) тепловой процесс происходит в таком интервале температур, что эффективным образом проявляет себя температурная зависимость  $\lambda(T)$  коэффициента теплопроводности. Данная работа является продолжением исследований [2-4]. *Цель работы*: 1) изучить нестационарные свойства теплового поля металлического образца при воздействии на него высокоинтенсивного поверхностного источника энергии; 2) исследовать влияние параметров поверхностного источника энергии и характера зависимости  $\lambda(T)$  металлов на качественные и количественные особенности поведения петель ДТГ в плоскости «тепловой поток – градиент температуры».

#### Постановка задачи

Металлическая пластина толщиной h имеет в начальный момент времени t=0 температуру  $T=T^0$ ; при  $t\geq 0$  правая граница x=h изотермическая  $T(h,t)=T_w\equiv T^0$ . На левую границу пластины x=0 действует тепловой поток  $q(0,t)=q_0(t)$ , моделирующий воздействие концентрированного потока энергии. Нагрев осуществляется в широком интервале температур, на котором нелинейные теплофизические свойства металла проявляют себя в полной мере (фазовые превращения не происходят).

Теплофизические свойства металла c(T),  $\lambda(T)$  на интервале температур  $[T_1, T_2]$  описываются полиномами третьей степени с постоянными коэффициентами. Построение этих полиномов осуществляется на основе справочных данных [5].

Математическая модель поставленной задачи приведена, например, в [2-4]. Рассматриваются поверхностные импульсы энергии треугольной, колоколообразной и трапециевидной временных форм. Все расчеты проводятся в безразмерных величинах. Приведение размерных величин к безразмерным приведено в [2].

### Метод решения

Решение поставленной задачи выполнено численным методом интегральных соотношений А.А. Дородницына [6]. Область интегрирования делится на пять полос:  $x_i = i\,h/5,\ i=0,1,...,5$ . Алгоритм решения позволяет учитывать поглощательную способность металла  $A(T) = A_0 + A_1 T$ . Подробности построения схемы вычислений даны в [2, 3].

Производство энтропии подсчитываем по формуле

$$\sigma = q \frac{\partial}{\partial x} \left( \frac{1}{T} \right).$$

Для характеристики нестационарных и нелинейных свойств теплопереноса применяем следующие критерии:

$$Q_{i} = \frac{q(x_{i}, t)h}{T^{0} \lambda(T^{0})}; g_{i} = \frac{h}{T^{0}} \left(\frac{\partial T}{\partial x}\right)_{x=x_{i}};$$

$$K[f] = \frac{P^{(2)}[f]}{\left[1 + \left(P^{(1)}[f]\right)^{2}\right]^{3/2}};$$

$$P^{(1)}[f] = \frac{\overline{f}(x_{2}) - \overline{f}(x_{0})}{x_{2} - x_{0}}, P^{(2)}[f] = \frac{\overline{f}(x_{2}) - 2\overline{f}(x_{1}) + \overline{f}(x_{0})}{(x_{1} - x_{0})^{2}},$$

$$\overline{f}(x_{i}) = f(T_{i}) / f(T^{0}), T_{i} = T(x_{i}, t);$$

$$S_{i} = \frac{\sigma(x_{i}, t)}{\sigma^{0}}, \sigma^{0} = \frac{\lambda(T^{0})}{h^{2}}.$$

Здесь Q — безразмерный тепловой поток, g — безразмерный градиент температуры, S — безразмерное производство энтропии. В качестве f(T) применяем теплофизические параметры  $\lambda(T)$  и  $a(T) = \lambda(T)/c(T)$ . Параметр кривизны K[f] относится к левой границе области. Параметры  $P^{(1)}[f]$ ,  $P^{(2)}[f]$  представляют собой конечно-разностные формулы для первой и второй производных изучаемых функций.

### Результаты расчетов

Расчеты выполнены для нескольких металлов (железо, молибден, вольфрам, никель, ванадий) с различным характером температурных зависимостей теплофизических свойств  $\lambda(T)$ , c(T). В качестве граничного теплового потока  $q_0(t)$  рассмотрены импульсы различных временных форм (рис. 1).

Основными характеристиками этих импульсов являются:

- максимальный тепловой поток  $q_{\max}$ ;
- время  $t = \tau_0$  достижения  $q_{\text{max}} = q_0(\tau_0)$ ;
- длительность импульса  $\tau$  .

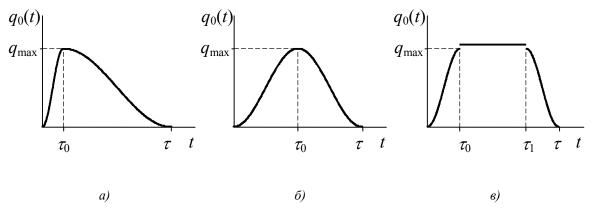



Рис. 1. Импульсы треугольной (а), колоколообразной (б) и трапециевидной (в) временных форм

Представим результаты моделирования теплового воздействия на пластины из никеля Ni и ванадия V, теплофизические свойства которых на интервале  $[T_1, T_2]$  аппроксимируются следующими полиномами:

$$Ni: T, K \in [300, 630],$$
  $c(T) = -6703290 + 75309, 2T - 173, 51456 T^2 + 0,135664 T^3 \ Дж/(м^3 \cdot K);$   $\lambda(T) = 223,65 - 0,8425 T + 0,00169 T^2 - 1,2217 \cdot 10^{-6} T^3 \ BT/(M \cdot K);$   $V: T, K \in [300, 2000],$   $c(T) = 2689498 + 996,3834 T - 0,33259 T^2 + 0,0001506 T^3 \ Дж/(м^3 \cdot K);$   $\lambda(T) = 29,11 - 0,000264 T + 1,39734 \cdot 10^{-5} T^2 - 4,23507 \cdot 10^{-9} T^3 \ BT/(M \cdot K).$ 

В основной серии расчетов (  $h=5\cdot 10^{-3}$  м,  $T_{\rm w}=T^0=300$  К ) для каждого вида  $q_0(t)$  рассмотрены три различные величины  $\tau$  :

I. Треугольный импульс (  $\tau_0 = 0.125 \tau$  )

a) 
$$\tau = 0.5 \tau^* = 1.6 c$$
; 6)  $\tau = 0.75 \tau^* = 2.4 c$ ; 6)  $\tau = \tau^* = 3.2 c$ ;

II. Колоколообразный импульс (  $\tau_0 = 0.5 \tau$  )

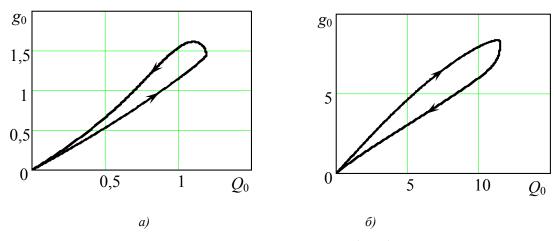
a) 
$$\tau = 0.25 \,\tau^* = 0.25 \,\mathrm{c}$$
; 6)  $\tau = 0.5 \,\tau^* = 0.5 \,\mathrm{c}$ ; 6)  $\tau = \tau^* = 1.0 \,\mathrm{c}$ ;

III. Трапециевидный импульс (  $\tau_0 = \tau - \tau_1 = 0.125 \tau$  )

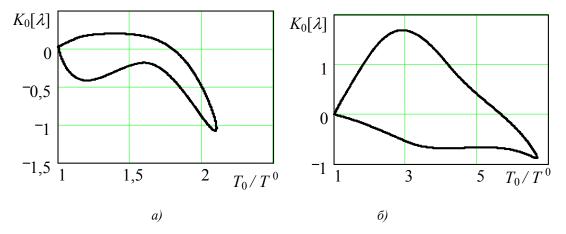
a) 
$$\tau = 0.5 \tau^* = 1.6 c$$
; 6)  $\tau = 0.75 \tau^* = 2.4 c$ ; 6)  $\tau = \tau^* = 3.2 c$ .

Для вариантов a-e всех видов импульса рассмотрены три величины  $q_{\max}$ :

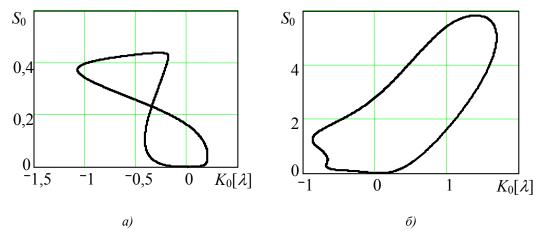
1) 
$$q_{\text{max}} = \frac{1}{3} q^*; 2) q_{\text{max}} = \frac{2}{3} q^*; 3) q_{\text{max}} = q^*.$$


Величина  $q^*$  для каждого вида импульса подобрана такой, что при  $\tau = \tau^*$  температура T(0,t) левой границы пластины в процессе нагрева изменяется во всем интервале  $[T_1,T_2]$ , т. е. температурные зависимости теплофизических свойств металла  $\lambda(T)$ , c(T) проявляют себя в полной мере. Для импульсов треугольной, колоколо-

образной и трапециевидной временных форм, соответственно, величины  $q^*$  следующие:


Ni: 
$$6,411\cdot10^6 \frac{\text{Bt}}{\text{M}^2}$$
;  $9\cdot10^6 \frac{\text{Bt}}{\text{M}^2}$ ;  $4,968\cdot10^6 \frac{\text{Bt}}{\text{M}^2}$ ;

V: 
$$20,71 \cdot 10^6 \frac{\text{BT}}{\text{M}^2}$$
;  $31,72 \cdot 10^6 \frac{\text{BT}}{\text{M}^2}$ ;  $14,43 \cdot 10^6 \frac{\text{BT}}{\text{M}^2}$ .


Ниже приведены характерные гистерезисные зависимости при треугольной форме импульса ( $\tau = \tau^*$ ,  $q_{\text{max}} = q^*$ ) для левой границы (a — материал пластины Ni,  $\delta$  — материал пластины V): между тепловым потоком и градиентом температуры (рис. 2), между относительной температурой  $T_0 / T^0$  и параметром кривизны  $K[\lambda]$  (рис. 3), между производством энтропии и параметром кривизны  $K[\lambda]$  (рис. 4).



*Рис.* 2. Формирование петли гистерезиса в плоскости (Q, g)



 $\mathit{Puc.}$  3. Гистерезисные зависимости в плоскости  $(T_0 \, / \, T^0 \, , \, K_0[\lambda])$ 



*Рис. 4.* Гистерезисные зависимости в плоскости  $(K_0[\lambda], S_0)$ 

Как видно из рис. 2, формирование петли гистерезиса в плоскости (Q,g) для никеля и ванадия происходит различным образом. При подводе тепла  $(dq_0/dt>0)$  к пластине никеля формируется нижняя часть петли, а при отводе  $(dq_0/dt<0)$  – верхняя (начальное состояние соответствует началу координат). Для ванадия – наоборот: при  $dq_0/dt>0$  формируется верхняя часть петли, а при  $dq_0/dt<0$  – нижняя. Такой результат обусловлен тем, что на всем интервале температур  $[T_1,T_2]$  зависимость  $\lambda(T)$  никеля есть функция монотонно убывающая, а для ванадия функция  $\lambda(T)$  монотонно возрастающая.

Мерой неоднозначной зависимости между градиентом температуры и тепловым потоком является относительное удлинение  $\beta$  (относительная площадь) петли ДТГ:

$$\beta = \frac{b_1}{b_0} \equiv \frac{b_1^2}{b_0 b_1},$$

где  $b_1$  — «длина петли»,  $b_0$  — «ширина петли» [4]. Во всех рассмотренных вариантах форма лепестка такая, что  $b_1/b_0 > 1$ . Чем меньше  $\beta$ , тем сильнее выражен ДТГ.

Результаты основной серии расчетов представлены в таблице 1.

Таблица I Влияние формы, длительности и максимальной интенсивности импульса на параметр  $\beta$ 

| Длительность импульса $	au$ , с | Материал пластины                                      |          |       |            |          |       |  |  |  |
|---------------------------------|--------------------------------------------------------|----------|-------|------------|----------|-------|--|--|--|
|                                 | Никель                                                 |          |       | Ванадий    |          |       |  |  |  |
|                                 | Максимальная величина теплового потока $q_{_{ m max}}$ |          |       |            |          |       |  |  |  |
|                                 | $q^*/3$                                                | $2q^*/3$ | $q^*$ | $q^*/3$    | $2q^*/3$ | $q^*$ |  |  |  |
|                                 | Параметр $eta$                                         |          |       | Параметр В |          |       |  |  |  |
|                                 | Треугольная форма импульса                             |          |       |            |          |       |  |  |  |
| 1,6                             | 39,27                                                  | 24,52    | 15,46 | 21,64      | 11,46    | 9,21  |  |  |  |
| 2,4                             | 37,33                                                  | 22,06    | 11,33 | 17,90      | 10,44    | 9,02  |  |  |  |
| 3,2                             | 36,55                                                  | 21,16    | 8,77  | 16,09      | 9,79     | 9,20  |  |  |  |

Окончание табл. 1

|                                 | Материал пластины                                     |          |       |                |          |       |  |  |  |
|---------------------------------|-------------------------------------------------------|----------|-------|----------------|----------|-------|--|--|--|
| Длительность импульса $	au$ , с | Никель                                                |          |       | Ванадий        |          |       |  |  |  |
|                                 | Максимальная величина теплового потока $q_{{ m max}}$ |          |       |                |          |       |  |  |  |
|                                 | $q^*/3$                                               | $2q^*/3$ | $q^*$ | $q^*/3$        | $2q^*/3$ | $q^*$ |  |  |  |
|                                 | Параметр В                                            |          |       | Параметр $eta$ |          |       |  |  |  |
|                                 | Треугольная форма импульса                            |          |       |                |          |       |  |  |  |
|                                 | Колоколообразная форма импульса                       |          |       |                |          |       |  |  |  |
| 0,25                            | 75,89                                                 | 46,07    | 35,77 | 45,29          | 19,70    | 14,02 |  |  |  |
| 0,5                             | 62,41                                                 | 37,68    | 21,39 | 29,80          | 13,71    | 10,95 |  |  |  |
| 1,0                             | 47,66                                                 | 28,24    | 11,01 | 20,75          | 10,84    | 10,33 |  |  |  |
|                                 | Трапециевидная форма импульса                         |          |       |                |          |       |  |  |  |
| 1,6                             | 30,19                                                 | 18,49    | 9,90  | 14,05          | 8,06     | 6,97  |  |  |  |
| 2,4                             | 32,27                                                 | 18,74    | 8,77  | 13,00          | 7,92     | 7,20  |  |  |  |
| 3,2                             | 34,63                                                 | 19,99    | 8,77  | 12,79          | 8,03     | 7,59  |  |  |  |

Как видно из таблицы, при фиксированном  $\tau$  зависимость  $\beta(q_{\max})$  для каждого из металлов монотонно убывающая. При фиксированном  $q_{\max}$  зависимость  $\beta(\tau)$  для рассматриваемых металлов многовариантна: для Ni, например, она либо монотонно убывает, либо монотонно возрастает.

Неоднозначные зависимости между тепловым потоком и градиентом температуры, между относительной температурой  $T_0/T^0$  и параметром кривизны  $K[\lambda]$ , между производством энтропии и параметром кривизны  $K[\lambda]$  (см. рис. 2-4) обусловлены двумя факторами: 1) нелинейной зависимостью  $\lambda(T)$  коэффициента теплопроводности; 2) немонотонным характером зависимости источника энергии  $q_0(T)$  от времени.

#### Выводы

Нестационарный поверхностный нагрев металла в широком интервале температур сопровождается процессами гистерезисного типа.

Импульсы энергии треугольной, колоколообразной и трапециевидной временных форм инициируют многовариантные эволюционные процессы в металлах. Свойства этих процессов зависят от функциональных зависимостей  $\lambda(T)$ , c(T), а также от параметров импульса.

Работа выполнена под научным руководством профессора О.Н. Шабловского.

## Список литературы

- 1. Дьюли У. Лазерная технология и анализ материалов. М.: Мир, 1986. 502 с.
- 2. Шабловский О.Н., Кроль Д.Г., Концевой И.А. Импульсный нагрев металла в широком интервале температур //Машиностроение. Минск, 2002. Вып. 18. С. 516-520.

- 3. Шабловский О.Н., Кроль Д.Г., Концевой И.А. Нестационарные свойства поверхностного нагрева металлов //Вістник Запорізького держ. університету. Фіз.-мат. науки. -2002. -№ 1. C. 148-152.
- 4. Шабловский О.Н., Концевой И.А. Гистерезисные свойства нестационарного температурного поля //Математические модели в образовании, науке и промышленности: Сб. науч. трудов. С.-Пб.: Санкт-Петербургское отделение МАН ВШ, 2003. С. 262-266.
- 5. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах: Справ. изд. М.: Металлургия, 1989. 384 с.
- 6. Белоцерковский О.М., Грудницкий В.Г. Исследование нестационарных течений газа со сложной внутренней структурой методами интегральных соотношений //Журнал вычисл. матем. и матем. физики. 1980. Т. 20. № 6. С. 1400-1415.

Получено 28.11.2003 г.