УДК 621.91

ИССЛЕДОВАНИЕ ВЛИЯНИЯ КОНТУРНЫХ ПЛОЩАДЕЙ БАЗОВЫХ ГРАНЕЙ СМП НА СТАТИЧЕСКУЮ ТОЧНОСТЬ СБОРНЫХ РЕЗЦОВ

М. И. МИХАЙЛОВ, В. В. СВИЧ, А. А. КАРПОВ

Гомельский государственный технический университет имени П. О. Сухого, Республика Беларусь

Ввеление

В процессе проектирования сборного режущего инструмента конструктор вынужден идеализировать топографию контактирующих поверхностей и их физикомеханические свойства, которые в значительной степени влияют на точностные показатели инструмента.

Кроме того, в настоящее время используется большое количество резцов с различными типами крепления сменных многогранных пластин (СМП).

Исследованию статической точности режущего инструмента посвящено большое количество работ [1-8], однако, они отражают исследования конкретных типов крепления и форм СМП.

Цель работы

Произвести сравнительный анализ сборных резцов с СМП по критерию статической точности и определить область их применения.

Методика проведения экспериментальных исследований

Исследованию подвергались резцы наиболее широко используемые в промышленности (табл. 1).

Перед проведением опытов пластины были разделены по площадям пятна контакта базовой грани с эталонной поверхностью на группы (табл. 2). Для лучшей сопоставимости результатов использовалось понятие отностительной контурной площади касания [9]. Исследования проводились на специальном стенде [8].

Утановив в державку твердосплавную пластину, воздействовали на нее силами в 300, 700, 1100, 1500 Н (имитирующими силы резания) в два этапа: на первом этапе производили нагружение пластины с плавным переходом от одного значения силы к другому, на втором этапе производили разгрузку и определяли перемещения пластины в точках 1-3 (табл. 1).

Измерения проводились на установке, принцип работы которой следующий: световой поток, выходящий из источника, падает на грань режущей пластины и частично отсекается, остальная часть светового потока попадает на приемник. В качестве источника использовался полупроводниковый лазер с длиной волны 600 нм. В качестве приемника был выбран фотодиод ФД-3. Кроме того, был разработан усилитель с коэффициентом усиления равным 500. Показания с усилителя снимались вольтметром Digital multimer DT-830B.

Усилитель вместе с блоком питания были собраны в одном корпусе, где установили 3-позиционный переключатель для последовательного управления сигналами с 3 датчиков.

Для того, чтобы учесть погрешность от вариации сил зажима, режущие пластины закреплялись при помощи динамометрического ключа.

Тарирование прибора производилось с использованием микрометрической скобы. Датчики тарировались в следующей последовательности: сначала измерительная пятка скобы перемещалась перпендикулярно лучу лазера и показания прибора записывались через каждые 10 мкм, затем определялось среднее значение перемещений в мкм на 1 единицу показания прибора. В результате вычисления среднего значения получили чувствительность схемы на одно деление прибора: лазер 1-0,16мкм; лазер 2-0,1мкм; лазер 3-0,093мкм. Схемы установки датчиков показаны на рис. 1.

Для того, чтобы результаты эксперимента были более точными, необходимо, чтобы лазерный источник и фотодиод (приемник) находились на одной оси. Влияние формы светового потока на точность измерений уменьшалось закреплением на выходном окуляре источника пластины со щелью шириной 0,1 мм.

Таблица 1

Тип пла-	Эскизы системы крепления	Расстояние
стины и её	•	между точка-
крепления		МИ
PW	A/A	$l_{12}=18 \text{ MM}$
3- и 5-	21	$l_{23}=10 \text{ MM}$
гранные	2 3	
пластины	3 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$1_{12}=13 \text{ MM}$
		l ₂₃ =9 _{MM}
PT	A /	1 ₁₂ =18 мм
3-, 5- и 6-	2 1 2 1 A-A	$l_{23}=12 \text{ MM}$
гранные		$l_{12}=18 \text{ MM}$
пластины		$l_{23}=9 \text{ MM}$
		$1_{12}=15 \text{ MM}$
		$l_{23}=5 \text{ MM}$
PP	1 2 3 1 1	1 ₁₂ =18 мм
3-гранные	AT TO A A THE	$l_{23}=15 \text{ MM}$
пластины		
	E A VATO	
СС 3- и 6-	2 A 2 CONTACTOR A-A	$l_{12}=13 \text{ MM}$
	3 3 3	l ₁₂ =18 мм
гранные пластины		l ₂₃ =9 мм
пластины		123—9 MM
KL	\overline{A}_{ℓ}	1 ₁₂ =5 мм
6-гранные	2 1 - 2 A-A	$l_{23}=9 \text{ MM}$
пластины	3 1 1 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	HAIMI THE	$1_{12}=5 \text{ MM}$
		l ₂₃ =9 мм
WP	2	
перетачи-	2 A A	
ваемые		
пластины		

Таблица 2

Значения относительных контурных площадей касания

Номер и тип пластины	Относительная площадь		
Трёхгранные			
1	0,496		
2	0,384		
3	0,272		
Пятигранные			
1	0,431		
2	0,287		
3	0,271		
Шестигранные	0,382		
Перетачиваемые	0,421		

Точки измерения перемещений для каждого типа крепления СМП приведены в табл.1. Для всех пластин точка 2 является точкой, в которой прикладывалась нагрузка.

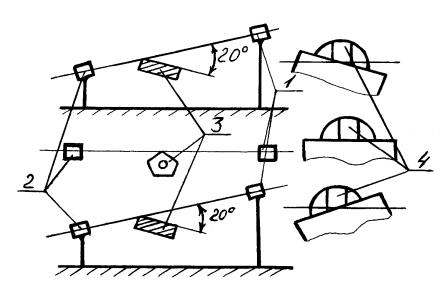


Рис. 1. Схемы установки датчиков: 1 – приемник; 2 – источник; 3 – пластина; 4 – щель

Результаты экспериментального исследования и их обсуждение

На рис. 2 показаны графики перемещения пластин под действием нагрузки. На рис. 2а изображены графики перемещений: 1, 2, 3 — соответственно, трехгранной пластины 1 (табл. 2) и державок типов крепления РТ, РР и СС (см. табл. 1); 4, 5, 6 — соответственно, пластин 1, 2, 3 (см. табл. 2) и державки типа РW. Анализ рис. 2а позволяет заключить, что с увеличением относительной площади касания базовой грани в соотношении1: 1,41: 1,83, соответственно, уменьшаются максимальные перемещения пластины в 1: 1,75: 2,5 раза, а применение типов крепления РW, РР и РТ позволяет, соответственно, повысить статическую точность в 5,0: 2,6: 1 раза. Применение крепления пластин в закрытый паз (тип СС) незначительно снижает статическую точность по сравнению с типом крепления РW, что объясняется более высокой технологичностью державки типа крепления РW. Конструкция резца с типом крепления РТ также обладает высокой технологичностью и невысокой сложностью, но

установка режущей пластины на штифт с прижимом ее со стороны боковой грани часто нарушает исходное базирование, что в итоге снижает жесткость резца.

На рис. 2б изображены графики перемещений: 1 — пятигранной пластины 2 (табл. 2) и державки типа РТ (см. табл. 1); 2, 3, 4 — соответственно, пластин 1, 2, 3 (см. табл. 2) и державки типа РW.

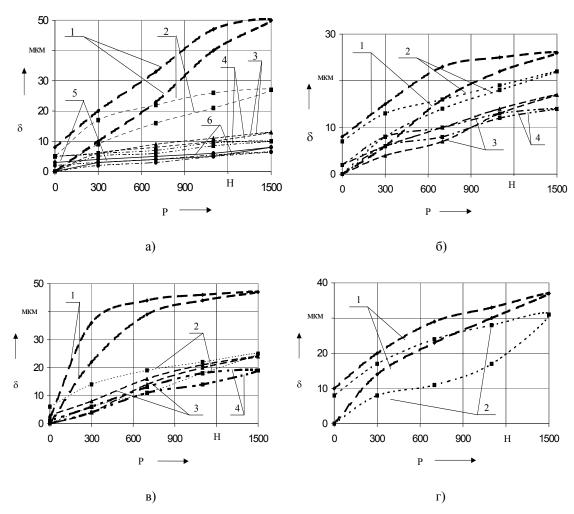


Рис. 2. Зависимость перемещения режущей кромки сборных резцов (δ) от нагрузки (P): с трехгранными (a), пятигранными (б), шестигранными (в) и перетачиваемыми пластинами (г)

Анализ рис. 26 позволяет заключить, что с увеличением относительной площади касания базовой грани в соотношении 1: 1,03: 1,59, соответственно, уменьшаются максимальные перемещения пластины в 1: 1,4: 1,8 раза, а применение типов крепления РW и РТ позволяет, соответственно, повысить статическую точность в 1,53: 1 раза, что обеспечивается дополнительной составляющей силы крепления в конструкции типа PW.

На рис. 2в изображены графики перемещений: 1, 2, 3, 4 — шестиграннных пластин (табл. 2) и державок типов KL_6 , PT, KL_a , CC (см. табл. 1). Анализ рис. 2в позволяет заключить, что применение типов крепления CC, KL_a , PT, KL_6 позволяет соответственно, повысить статическую точность в соотношении 2,54: 1,35: 1,29: 1. Это объясняется тем, что типы креплений KL обладают высокой чувствительностью к точности изготовления элементов системы крепления, а также тем, что $CM\Pi$ опирается на тангенциально закрепленную опорную пластину.

На рис. 2г изображены графики перемещений: 1, 2 — перетачиваемых пластин (табл. 2) и державок типов WP_{6} , WP_{a} (см. табл. 1). Анализ рис. 2г позволяет заключить, что применение типа крепления WP_{a} позволяет повысить статическую точность в 1,2 раза, это объясняется тем, что в типе креплений WP_{a} отсутствует блоквставка, которая имеет дополнительные контактные поверхности.

Сравнение графиков на рис. 2а, б и в позволяет заключить, что применение трех-, пяти- и шестигранных пластин в державках с типом крепления РТ приводит к снижению статической точности, соответственно, в 2: 1,08: 1 раза в следствие влияния контактных перемещений на статическую точность.

Выводы

Проведенные исследования позволяют правильно выбрать тип крепления и форму режущих пластин по критерию статической точности сборных резцов, так например, при черновой обработке стали можно рекомендовать резцы с типом крепления PW, а при чистовой — с типом крепления PP. Кроме того, для повышения коэффициента использования твердого сплава необходимо использовать резцы с типом крепления WP.

Литература

- 1. Хамуда С.Н, Громаков К.Г., Шустиков А.Д. Экспериментальное исследование жесткости сборных торцевых фрез по их статическим харастеристикам //Исследование процессов обработки металлов и динамики технологического оборудования.— М., 1982.— С. 44-49.
- 2. Шустиков А.Д., Матвейкин В.В., Хамуда С. Н. Исследование спектров колебаний и стойкости торцевых фрез с механически закрепленными режущими пластинами //Исследование динамики технологического оборудования и инструмента: Сб. ст. М., 1982.– С. 34-37.
- 3. Шустиков А.Д. Анализ качества сборных проходных резцов. М.: НИИМаш, 1981.– 40 с.
- 4. Малыгин В.М., Шустиков А.Д., Вольвачев Ю.Ф. и др. Методика исследования статических характеристик сборных фрез //Вопросы повышения качества металлорежущего оборудования и инструмента: Сб. ст. М., 1984.– С. 33-37.
- 5. Способ контроля качества инструмента /А.Д. Шустиков и др. А. с. 2895679 (СССР) МКИ 5 В23В.
- 6. Михайлов М.И. Экспериментальное исследование сборных резцов //Машиностроение.— Минск, 1990. Вып. 15.— С. 39-42.
- 7. Михайлов М.И. Повышение прочности сборного режущего инструмента /Под ред. П.И. Ящерицына.— Минск: Навука і тэхніка, 1993.— 174 с.
- 8. Михайлов М.И., Свич В.В., Карпов А.А. Исследование точности сборного резца со сменной четырехгранной пластиной //Современные проблемы машиноведения: Материалы МНТК /ГГТУ им. П.О. Сухого. Гомель, 2000. Т1. С.156-158.
- 9. Михайлов М.И., Шабакаева З.Я. Исследование геометрических параметров базовых граней сменных многогранных пластин //Материалы, технологии, инструмент. 1996.— № 3.— С. 84-88.

Получено 20.12.2000 г.