

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Техническая механика»

О. Н. Шабловский, Н. В. Иноземцева

ДИНАМИКА

ПРАКТИКУМ по курсу «Теоретическая механика» для студентов инженерно-технических специальностей дневной и заочной форм обучения

Электронный аналог печатного издания

УДК 531.3(075.8) ББК 22.21я73 Ш13

Рекомендовано к изданию научно-методическим советом машиностроительного факультета ГГТУ им. П. О. Сухого (протокол № 3 от 29.12.2008 г.)

Рецензент: зав. каф. «Металлорежущие станки и инструменты» ГГТУ им. П. О. Сухого, канд. техн. наук, доц. *М. И. Михайлов*

Шабловский, О. Н.

Ш13

Динамика: практикум по курсу «Теоретическая механика» для студентов инженер.техн. специальностей днев. и заоч. форм обучения / О. Н. Шабловский, Н. В. Иноземцева. – Гомель: ГГТУ им. П. О. Сухого, 2009. – 41 с. – Систем. требования: РС не ниже Intel Celeron 300 МГц; 32 Мb RAM; свободное место на HDD 16 Мb; Windows 98 и выше; Adobe Acrobat Reader. – Режим доступа: http://lib.gstu.local. – Загл. с титул. экрана.

ISBN 978-985-420-882-4.

Рассмотрены способы исследования движения механических систем (с одной степенью свободы) с помощью теоремы об изменении кинетической энергии. Представлена подборка задач, которые могут предлагаться студентам на практических занятиях и для выполнения расчетно-графических работ.

Для студентов инженерно-технических специальностей дневной и заочной форм обучения.

УДК 531.3(075.8) ББК 22.21я73

ISBN 978-985-420-882-4

- © Шабловский О. Н., Иноземцева Н. В., 2009
- © Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», 2009

1. Теорема об изменении кинетической энергии системы

Теорема гласит: изменение кинетической энергии при ее перемещении из одного положения в другое равно сумме работ всех действующих на систему внешних и внутренних сил, произведенной ими на этом перемещении:

$$T - T_0 = \sum A_i^E + \sum A_i^J \,, \tag{1}$$

где T_0 и T — кинетическая энергия системы в начальном и конечном положениях; $\sum A_i^E$ — сумма работ внешних сил, приложенных к системе на перемещении системы из начального положения в конечное; $\sum A_i^J$ — сумма работ внутренних сил, приложенных к системе на том же перемещении.

Если механическая система является неизменяемой, т. е. состоит из абсолютно твердых тел, соединяемых шарнирами без трения или нерастяжимыми нитями, то $\sum A_i^J = 0$, т. е. сумма работ всех внутренних сил равна нулю.

Кинетической энергией системы называется величина T, равная сумме кинетических энергий всех элементов системы:

$$T = \frac{\sum m_k v_k^2}{2} \ . \tag{2}$$

Механические системы состоят из материальных точек и твердых тел. Найдем формулы для вычисления кинетической энергии твердого тела при различных видах его движения.

При поступательном движении тела

$$T = \frac{mv^2}{2},\tag{3}$$

где m — масса; \vec{v} — скорость любой точки тела.

При вращении тела вокруг неподвижной оси z с угловой скоростью ω

$$T = \frac{I_z \omega^2}{2},\tag{4}$$

где I_z – момент инерции тела относительно оси вращения.

При плоскопараллельном движении тела

$$T = \frac{m\upsilon_C^2}{2} + \frac{I_{Cz}\omega^2}{2}$$

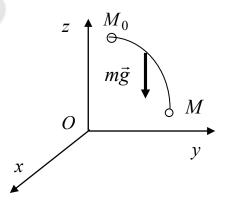
$$T = \frac{I_{pz}\omega^2}{2},$$
(5)

или

где I_{Cz} — момент инерции тела относительно оси, проходящей через центр масс тела; I_{pz} — момент инерции тела относительно оси, проходящей через мгновенный центр скоростей, ось $Cz/\!/Pz$; ω — угловая скорость тела; υ_C — скорость центра масс.

Полную работу некоторой силы $\vec{F} = \vec{i}\,F_x + \vec{j}F_y + \vec{k}F_z$ можно представить в виде интеграла

$$A(\vec{F}) = \int_{S_0}^{S} F_{\tau} ds = \int_{(x_0, y_0, z_0)}^{(x, y, z)} (F_x dx + F_y dy + F_z dz), \tag{6}$$

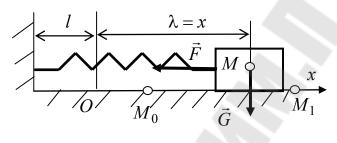

где F_{τ} — касательная к траектории компонента силы; s — дуговая координата; x,y,z — декартовые координаты. Значения s_0 и x_0,y_0,z_0 соответствуют начальному положению точки.

Рассмотрим примеры вычисления работы некоторых сил.

1. Работа сил тяжести системы $\vec{P} = m\vec{g}$ равна

$$A(\vec{P}) = Ph, \ h = z_0 - z_1,$$
 (7)

где $h>0,\ z_0>z_1,\ A\Big(\vec{P}\Big)>0$ при опускании точки; если же $h<0,\ z_0< z_1,$ то $A\Big(\vec{P}\Big)<0$. Работа (7) не зависит от формы траектории (рис. 1):


Puc. 1

2. Работа линейной силы упругости.

Работа линейной силы упругости пружины, имеющей жесткость $c={\rm const}$, $F_x=-cx$, равна половине произведения коэффициента жесткости на разность квадратов начальной и конечной деформации пружин:

$$A(\vec{F}) = \frac{c}{2} (x_0^2 - x_1^2). \tag{8}$$

Если точка перемещается из состояния статического равновесия, $x_0 = 0$, то $A(\vec{F}) < 0$ независимо от направления движения (рис. 2):

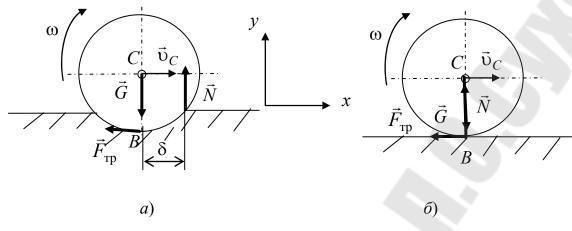
Puc. 2

3. Работа силы \vec{F} , приложенной к некоторой точке тела, совершающего вращательное движение вокруг неподвижной оси z :

$$A = \int_{\varphi_0}^{\varphi_1} M_z(\vec{F}) d\varphi, \tag{9}$$

где ϕ_0 и ϕ_1 — соответственно начальное и конечное значения угла поворота в радианах; $M_z(\vec{F})$ — момент силы относительно оси вращения.

4. Работа силы трения скольжения.


При скольжении тела по шероховатой поверхности на него действует сила трения $\vec{F}_{\rm rp}$, модуль которой равен $\left|\vec{F}_{\rm rp}\right| = f \left|\vec{N}\right|$, где f- коэффициент трения скольжения; $\vec{N}-$ нормальная реакция поверхности.

$$A(\vec{F}_{\rm Tp}) = -\int_{s_0}^{s} |\vec{F}_{\rm Tp}| ds.$$
 (10)

5. Работа силы трения качения.

На абсолютно твердое колесо весом \vec{G} радиусом R, катящееся по некоторой деформируемой поверхности без скольжения, действует

приложенная к точке касания B сила трения $\vec{F}_{\rm rp}$, препятствующая скольжению, и нормальная реакция \vec{N} (рис. 3, a):

Puc. 3

Так как поверхность, по которой катится колесо, деформируется, то касание происходит по некоторой площадке и точка приложения силы \vec{N} при качении смещается в направлении движения на величину δ (δ – коэффициент трения качения). Сопротивление качению создает пара сил (\vec{N} , \vec{G}), момент которой $M = \delta |\vec{N}|$. Тогда

$$dA = -Md\varphi, \tag{11}$$

где $d\phi$ – элементарное угловое перемещение колеса.

Если модуль нормальной реакции $N = {\rm const}$, то работа сил сопротивления качению определяется по формуле

$$A = -\left(\frac{\delta}{R}\right)N \cdot s_C. \tag{12}$$

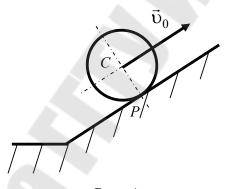
При качении без скольжения работа силы трения скольжения на любом перемещении равна нулю.

В идеализированном случае, не учитывающем деформацию поверхности (рис. 3, δ), работа нормальной реакции будет равна нулю.

2. Варианты заданий

Механическая система с одной степенью свободы приходит в движение под действием сил тяжести и движущего момента, приложенного к телу 2 или движущей силы, приложенной к телу 4. В начальный момент времени система находится в покое.

Схемы заданий представлены в приложении 1 (рис. П.1.1).

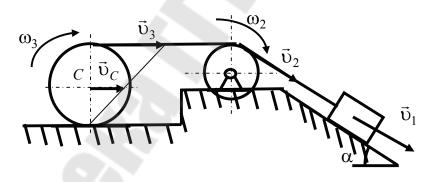

Найти скорость центра масс тела l, в тот момент, когда тело 4 пройдет путь, равный s.

При решении задачи учитывать:

- трение скольжения тела 4;
- сопротивление качению тела 1, катящегося без скольжения;
- момент сил сопротивления, приложенный к телу *3*, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми.

3. Примеры решения задач

Задача 1. Центру однородного тяжелого диска, имеющего массу m и расположенного на наклонной плоскости, сообщили начальную скорость \vec{v}_0 , направленную вверх параллельно плоскости. Определить максимальную высоту, на которую поднимется центр диска. Рассмотреть два варианта (рис. 4): 1) диск скользит по плоскости без качения; 2) диск катится без скольжения.


Puc. 4

Решение. Рассмотрим первый вариант движения. Так как качение отсутствует, то движение происходит без участия силы трения, связь является идеальной. Работу в этом случае производит только сила тяжести: A = -mgh. При чистом скольжении диск движется поступательно, $\omega = 0$, так что $T_0 = \frac{m \upsilon_0^2}{2}$. В момент достижения максимальной высоты диск останавливается. Значит, в конечном положении T = 0. Уравнение (2) примет вид: $T - T_0 = -\frac{m \upsilon_0^2}{2}$, $\frac{m \upsilon_0^2}{2} = mgh_*$; $h_* = \frac{\upsilon_0^2}{2g}$.

Теперь обсудим второй вариант. При наличии одного только качения работа реакции плоскости нулевая, поскольку элементарное перемещение мгновенного центра скоростей (точка P) равно нулю.

Диск совершает плоское движение, и для него $T_0 = \frac{J_{p\xi}\omega_0^2}{2}$, $\omega_0 = \frac{\upsilon_0}{R}$, $J_{p\xi} = J_{c\xi} + mR^2 = \frac{3}{2}mR^2$. Отсюда находим $T_0 = \frac{3m\upsilon_0^2}{4}$. По теореме (2) имеем $-\frac{3m\upsilon_0^2}{4} = -mgh_{**}$, $h_{**} = \frac{3\upsilon_0^2}{4g}$. Значит $h_{**} = \frac{3h_*}{2}$, в случае качения центр диска поднимается в полтора раза выше, чем при скольжении.

Задача 2. Груз массы $m_1 = 40$ кг, скользящий по гладкой наклонной плоскости с углом $\alpha = 30^{\circ}$, прикреплен к нерастяжимой нити, переброшенной через блок 2 массы $m_2 = 4$ кг и намотанной на каток 3. Каток представляет собой однородный сплошной цилиндр массы $m_3 = 80$ кг и катится по горизонтальной плоскости без скольжения (рис. 5). Коэффициент трения качения катка $\delta = 0.05R_3$. Пренебрегая массой нити и трением в оси блока, определить скорость груза I после того, как он переместится по наклонной плоскости на расстояние s = 1 м. В начальный момент система находилась в покое.

Puc. 5

Решение. Опускающийся груз движется поступательно и его кинетическая энергия равна $T_1=\frac{m_1\upsilon_1^2}{2}$. Для блока 2, совершающего вращательное движение, имеем $T_2=\frac{J_2\omega_2^2}{2}$. Так как $\upsilon_1=\upsilon_2=\omega_2R_2$, $J_2=\frac{m_2R_2^2}{2}$, $\omega_2=\frac{\upsilon_2}{R_2}$, тогда $T_2=\frac{m_2\upsilon_1^2}{4}$.

Отметим, что кинетическая энергия блока не зависит от его радиуса. Каток 3 движется плоскопараллельно, и его мгновенный центр скоростей находится в точке P касания с неподвижной плоскостью. Для нерастяжимой нити $|\vec{\mathbf{v}}_3| = |\vec{\mathbf{v}}_1|$, отсюда получаем угловую скорость $\omega_3 = \frac{\upsilon_1}{2R_3}$. Таким же образом получаем выражение угла поворота ϕ_3 катка через перемещение груза I вдоль наклонной плоскости: $\phi_3 = \frac{s}{2R_3}$.

Скорость центра масс катка равна $\upsilon_C = \frac{\upsilon_1}{2}$. По формуле $T_3 = \frac{m_3 \upsilon_{C3}^2}{2} + \frac{J_{C\xi} \omega_3^2}{2}$ получаем $T_3 = \frac{3m_3 \upsilon_1^2}{16}$.

Кинетическая энергия системы: $T = T_1 + T_2 + T_3 = m_* v_1^2$,

$$m_* = \frac{\left(8m_1 + 4m_2 + 3m_3\right)}{16}.$$

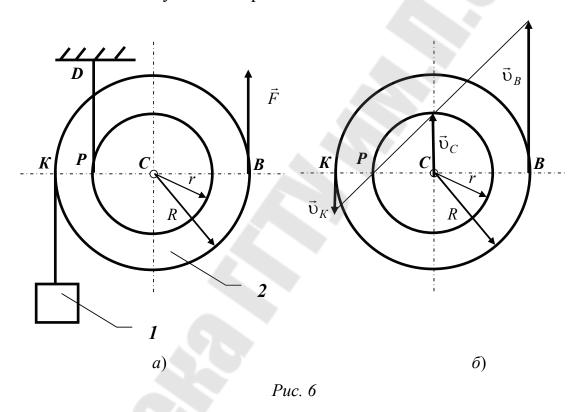
В исходном состоянии $T_0=0$. Найдем работу сил, приложенных к элементам системы: $\sum A_i^E = A(m_1\vec{g}) + A(m_2\vec{g}) + A(m_3\vec{g}) + A(\vec{M}_{K1})$.

Из трех указанных сил тяжести ненулевую работу совершает только одна: $A(m_1\vec{g}) = m_1 g s \cdot \sin \alpha$, $h = s \cdot \sin \alpha$.

Центр тяжести блока неподвижен $A(m_2\vec{g})=0$, а центр тяжести катка движется горизонтально $A(m_3\vec{g})=0$. Работа сил трения качения отрицательна и определяется работой момента $M_K=\delta\cdot N$, $N=m_3g$.

$$A(M_K) = -M_K \varphi_3 = -\delta \cdot m_3 g \frac{s}{2R_3}.$$

Подставляя полученные значения в уравнение (2), получаем:


$$v_1^2 m_* = \left(m_1 \sin \alpha - \frac{\delta \cdot m_3}{2R_3} \right) gs.$$

Числовые расчеты дают $\upsilon_1 = 2{,}21$ м/с при s = 1 м.

Задача 3. Двухступенчатый барабан массы $m_2 = 15$ кг связан с неподвижной точкой D посредством нерастяжимой нити, намотанной на малую ступень барабана радиуса r. Большая ступень барабана радиуса R = 2r обмотана двумя нерастяжимыми нитями; к одной из

них подвешен груз I массы $m_1 = 15$ кг, а к концу другой приложена сила F = 196 Н. Радиус инерции барабана относительно оси, проходящей через его центр C, равен $i = (R \cdot r)^{1/2}$; нити остаются в процессе движения вертикальными; движение начинается из состояния покоя; массой нитей пренебречь (рис. 6). Найти скорость груза I после того, как он опустится на величину s = 1 м.

Pешение. Кинематический анализ данной механической системы показывает, что для барабана, совершающего плоское движение, мгновенный центр скоростей находится в точке P касания неподвижной нити с малой ступенью барабана.

Тогда, учитывая, что $\vec{v}_K = \vec{v}_1$, можем выразить угловую скорость барабана через скорость опускающегося груза:

$$\omega_2 = \frac{\upsilon_1}{KP} = \frac{\upsilon_1}{R-r}$$
.

Соответственно, длина спустившейся нити равна $s_1 = \varphi_2(R-r)$, где φ_2 – угол поворота барабана. Расположение векторов скоростей точек B и C по отношению к мгновенному центру скоростей показано на рис. 6, δ . Вычисляем:

$$\upsilon_C = \omega_2 r = \frac{\upsilon_1 r}{R - r}; \ \upsilon_B = \omega_2 (R + r) = \frac{\upsilon_1 (R + r)}{(R - r)}.$$

Перемещения точек B и C записываются в форме:

$$s_C = \varphi_2 r = \frac{s_1 r}{R - r}; \ s_B = \varphi_2 (R + r) = \frac{s_1 (R + r)}{(R - r)}.$$

Кинетическая энергия системы $T = T_1 + T_2$, причем $T_1 = \frac{m_1 v_1^2}{2}$;

для барабана $T_2=\frac{m_3 \mathrm{v}_C^2}{2}+\frac{J_{C\xi} \mathrm{w}_2^2}{2}, \ J_{C\xi}=m_2 i^2=m_2 r R$, тогда получаем $m_2 \mathrm{v}_1^2 - r (R+r)$ $m_* \mathrm{v}_1^2 - r (R+r)$

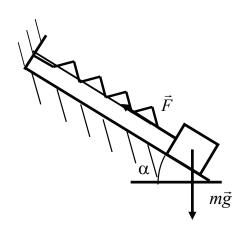
$$T_2 = \frac{m_2 v_1^2}{2} \cdot \frac{r(R+r)}{(R-r)^2}$$
, и $T = \frac{m_* v_1^2}{2}$, $m_* = m_1 + m_2 \frac{r(R+r)}{(R-r)^2}$.

Работа сил, приложенных к элементам системы, характеризуется выражением

$$\sum A_i^E = A(m_1 \vec{g}) + A(m_2 \vec{g}) + A(\vec{F}).$$

Находим $A(m_1\vec{g}) = m_1gs_1$, $A(m_2\vec{g}) = -m_2gs_C = -m_2g\frac{sr}{(R-r)}$, ра-

бота силы \vec{F} положительная $A(\vec{F}) = Fs_B = F \frac{s_1(R+r)}{(R-r)}$.


Тогда
$$\sum A_i^E = F_* s$$
, где $F_* = m_1 g - m_2 g \frac{r}{(R-r)} + F \frac{(R+r)}{(R-r)}$.

Подставляя все в теорему (2), получаем:

$$\frac{m_* v_1^2}{2} = F_* s; \ v_1 = \sqrt{\frac{2sF_*}{m_*}}.$$

Числовые расчеты дают $\upsilon_1 = 4,43\,$ м/с при $s=1\,$ м.

Задача 4. Груз массы m находится на гладкой наклонной плоскости с углом наклона α и связан пружиной, имеющей коэффициент жесткости c, с неподвижной стенкой (рис. 7). Пружину сжимают из свободного состояния на величину s, после чего груз опускают с начальной скоростью υ_0 . Определить: 1) скорость груза в тот момент, когда его удаление от стенки будет равно длине свободной пружины; 2) максимальное растяжение пружины при $\upsilon_0 = 0$.

Puc. 7

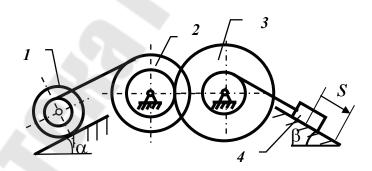
Pешение. Для 1-го случая имеем $T-T_0=rac{m v_0^2}{2}-rac{m v_0^2}{2}$.

Работа силы упругости определяется формулой (9), в которой $x_0=-s$, $x_1=0$, т. е. $A(\vec{F})=\frac{cs^2}{2}$. Учитывая, что $A(m\vec{g})=mgh=mgs\sin\alpha$, получаем $\frac{m\upsilon^2}{2}-\frac{m\upsilon_0^2}{2}=\left(mgs\sin\alpha+\frac{cs^2}{2}\right)$.

Отсюда находим, что при прохождении грузом координаты, соответствующей статическому положению равновесию пружины, скорость его равна

$$\upsilon = \left[\upsilon_0^2 + s\left(2g\sin\alpha + \frac{cs}{m}\right)\right]^{\frac{1}{2}}.$$

Для второго случая, по условию задачи, $T_0 = 0$, T = 0, значит максимальному растяжению пружины отвечает уравнение


$$A(m\vec{g}) + A(\vec{F}) = 0,$$

в котором $A(m\vec{g}) = mg(s+s_*)\sin\alpha$, $A(\vec{F}) = \frac{c(s^2-s_*^2)}{2}$, где $x=s_*$ - координата груза в конечном положении. Следовательно,

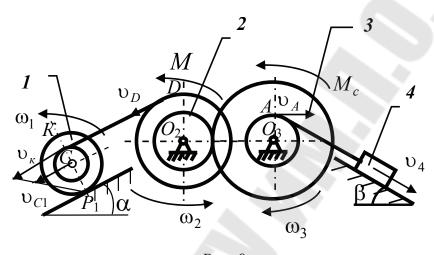
$$mg(s+s_*)\sin\alpha + \frac{c(s^2-s_*^2)}{2} = 0$$
,

$$s_* = s + \frac{2mg\sin\alpha}{c}.$$

Задача 5. Груз 4 массы $m_4 = 5m$, скользящий по шероховатой наклонной плоскости с углом $\beta = 60$ °, прикреплен к нерастяжимой нити, переброшенной через ступенчатый блок 3 массы $m_3 = 4m$, находящийся в зацеплении с блоком 2, массой $m_2 = 2m$ и намотанной на каток 1. Каток представляет собой двухступенчатый барабан массы $m_1 = m = 2$ кг и катится по наклонной плоскости с углом $\alpha = 30^{\circ}$ без скольжения. Коэффициент трения качения катка $\delta = 0.3$ см. Радиусы блока 2 $R_2 = 30$ см и $r_2 = 10$ см, блока 3 $R_3 = 40\,{\rm cm}$, $r_3 = 20$ см, катка I $R_1 = 20$ см и $r_1 = 10$ см. Радиус инерции катка относительно оси, проходящей через его центр $i_{\xi_1}=15$ см; радиус инерции блока 2 относительно оси, проходящей через его центр $i_{x2} = 18$ см, блока $3 i_{x3} = 25$ см. Коэффициент трения скольжения тела 4 по наклонной плоскости f=0,1. К блоку 2 приложена пара сил с моментом $M=1~\mathrm{H\cdot M}$, к блоку 3 приложена пара сил сопротивления с моментом $M_c = 1,2~{
m H\cdot m}$. Система приходит в движение из состояния покоя (рис. 8). Определить скорость центра масс тела 1, в тот момент, когда тело 4 пройдет путь равный $s=2\,$ м, учитывая трение скольжения тела 4 и сопротивление качению тела 1, катящегося без скольжения, а также момент сил сопротивления, приложенный к телу 3, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми.

Puc. 8

Решение. Применим для решения задачи теорему об изменении кинетической энергии механической системы (1).


Для рассматриваемой системы, состоящей из абсолютно твердых тел, соединенных нерастяжимыми нитями $\sum A_i^J = 0$.

Так как в начальном положении система находится в покое, то $T_0 = 0$. Следовательно, уравнение (1) принимает вид

$$T = \sum A_i^E .$$

Вычислим кинетическую энергию системы как сумму кинетических энергий тел 1, 2, 3 и 4 (рис. 9):

$$T = T_1 + T_2 + T_3 + T_4.$$

Puc. 9

Кинетическая энергия тела 1, совершающего плоское движение,

$$T_1 = \frac{m_1 v_{C1}^2}{2} + \frac{J_{1\xi} \omega_1^2}{2},$$

где υ_{C1} – скорость центра масс C катка I; $J_{1\xi} = m_1 i_{1\xi}^2 = m i_{1\xi}^2$ – момент инерции катка I относительно его центральной продольной оси; $\omega_1 = \frac{\upsilon_{C1}}{R_1}$ – угловая скорость катка I. Следовательно, получаем:

$$T_1 = \frac{mv_{C1}^2}{2} + \frac{mi_{1\xi}^2 v_{C1}^2}{2R_1^2}.$$

Кинетическая энергия тела 2, совершающего вращательное движение, равна

$$T_2 = \frac{J_{2x}\omega_2^2}{2},$$

где $J_{2x}=m_2i_{2x}^2=2mi_{2x}^2$ — момент инерции катка 2 относительно его центральной оси; $\omega_2=\frac{\upsilon_D}{R_2}$ — угловая скорость колеса 2; υ_D — скорость точки D колеса 2. Найдем зависимость между скоростью точки D и скоростью центра масс колеса I, учитывая свойства мгновенного центра скоростей:

$$\upsilon_D = \upsilon_K = \omega_1 (R_1 + r_1) = \frac{\upsilon_{C1}}{R_1} (R_1 + r_1).$$

Тогда угловая скорость колеса 2 $\omega_2 = \frac{\upsilon_{C1}}{R_2 R_1} (R_1 + r_1)$. В итоге получаем:

$$T_2 = \frac{mi_{2x}^2 v_{C1}^2}{R_1^2 R_2^2} (R_1 + r_1)^2.$$

Кинетическая энергия тела 3, совершающего вращательное движение, равна

$$T_3 = \frac{J_{3x}\omega_3^2}{2},$$

где $J_{3x}=m_3i_{3x}^2=4mi_{3x}^2$ — момент инерции катка 2 относительно его центральной оси; $\omega_3=\frac{\omega_2 r_2}{R_3}$ — угловая скорость колеса 3, определяемая из равенства скоростей в точке касания колес 2 и 3. Учитывая выражение для угловой скорости второго колеса, получаем:

$$\omega_3 = \frac{\upsilon_{C1} r_2}{R_3 R_2 R_1} (R_1 + r_1).$$

В результате:

$$T_3 = \frac{2mi_{3x}^2 v_{C1}^2 r_2^2}{R_1^2 R_2^2 R_3^2} (R_1 + r_1)^2.$$

Кинетическая энергия тела 4, совершающего поступательное движение, равна

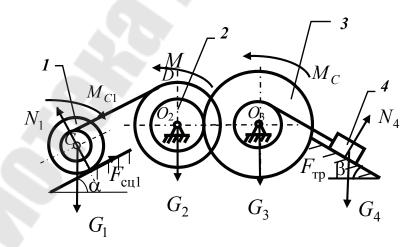
$$T_4 = \frac{m_4 v_4^2}{2},$$

где $\upsilon_4 = \omega_3 r_3$ — скорость центра масс тела 4. Учитывая выражение для ω_3 , получаем:

$$v_4 = \frac{v_{C1}r_2r_3}{R_3R_2R_1} (R_1 + r_1).$$

Следовательно, получаем:

$$T_4 = \frac{5mr_3^2 v_{C1}^2 r_2^2}{2R_1^2 R_2^2 R_3^2} (R_1 + r_1)^2.$$


В итоге получаем выражение для кинетической энергии системы как функцию скорости υ_{C1} :

$$T=m^*\upsilon_{C1}^2,$$

$$m^* = m \left(\frac{1}{2} + \frac{i_{1\xi}^2}{2R_1^2} + \frac{i_{2x}^2}{R_2^2 R_1^2} (R_1 + r_1)^2 + \frac{2i_{3x}^2 r_2^2}{R_3^2 R_2^2 R_1^2} (R_1 + r_1)^2 + \frac{5r_3^2 r_2^2}{2R_3^2 R_2^2 R_1^2} (R_1 + r_1)^2 \right).$$

Найдем сумму работ всех внешних сил, приложенных к системе, как функцию независимого перемещения. За такую независимую величину принимаем перемещение четвертого тела $s_4 = s$. Покажем внешние силы, приложенные к системе (рис. 10):

$$\sum A_i^E = A(\vec{G}_4) + A(\vec{F}_{TD4}) + A(\vec{M}_{C3}) + A(\vec{M}) + A(\vec{G}_1) + A(\vec{M}_{C1}).$$

Puc. 10

Работа силы тяжести тела 4:

$$A(\vec{G}_4) = G_4 h_4 = m_4 g s_4 \sin \beta = 5 m g s \sin \beta.$$

Работа силы трения скольжения 4 тела:

$$A(\vec{F}_{\text{Tp4}}) = -F_{\text{Tp4}}s_4 = -fN_4s_4 = -fm_4gs_4\cos\beta = -5fmgs\cos\beta.$$

Работа пары сил сопротивления вращению тела 3:

$$A(\vec{M}_{C3}) = -M_C \phi_3 = -M_C \frac{s}{r_3},$$

где $\phi_3 = \frac{s}{r_3}$ — угловое перемещение колеса 3, получаемое из выражения для угловой скорости колеса 3 при интегрировании его при нулевых начальных условиях.

Работа движущего момента тела 2:

$$A(\vec{M}) = M\varphi_2 = M \frac{sR_3}{r_2r_3},$$

где $\varphi_2 = \frac{sR_3}{r_2r_3}$ — угловое перемещение колеса 2, получаемое из выра-

жения для угловой скорости колеса 2 при интегрировании его при нулевых начальных условиях.

Работа силы тяжести тела 1:

$$A(\vec{G}_1) = G_1 h_1 = m_1 g s_{C1} \sin \alpha = m g s_{C1} \sin \alpha.$$

Используя выражения для угловой скорости колеса l и интегрируя его при нулевых начальных условиях, получаем выражение для угла поворота тела l:

$$\varphi_1 = \frac{\varphi_2 R_2}{R_1 + r_1} = \frac{sR_3 R_2}{r_2 r_3 (R_1 + r_1)}.$$

Аналогично находим выражение для перемещения центра масс C колеса I:

$$s_{C1} = \varphi_1 R_1 = \frac{sR_3 R_2 R_1}{r_2 r_3 (R_1 + r_1)}.$$

Тогда получаем:

$$A(\vec{G}_1) = mg \frac{sR_3R_2R_1}{r_2r_3(R_1 + r_1)} \sin \alpha.$$

Работа пары сил сопротивления качению катка 1:

$$A(\vec{M}_{C1}) = -M_{C1}\varphi_1,$$

где $M_{C1} = \delta N_1 = \delta mg \cos \alpha$.

Следовательно
$$A(\vec{M}_{C1}) = -\delta mg \cos \alpha \frac{sR_3R_2}{r_2r_3(R_1 + r_1)}$$
.

В итоге получаем:

$$\sum A_i^E = F^* s,$$

где

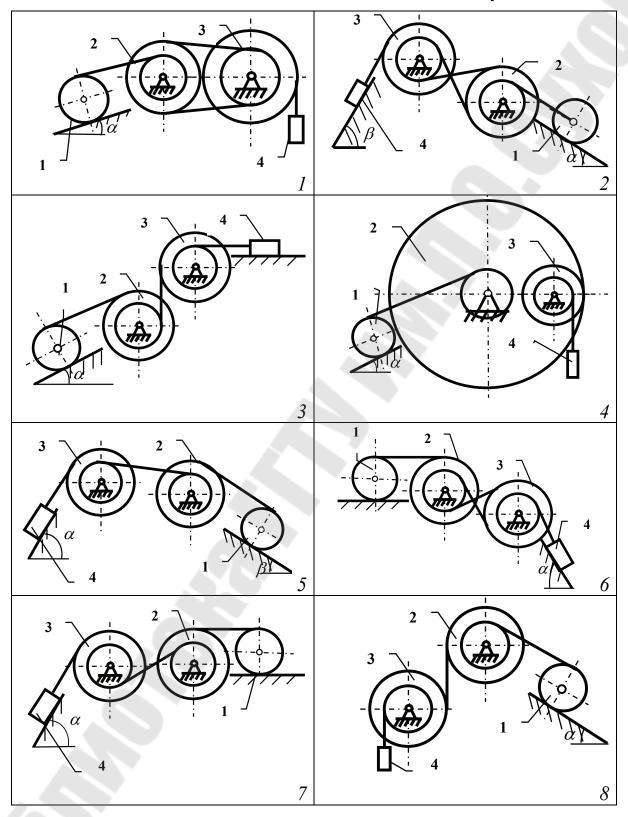
$$F^* = mg \left(5\sin\beta - 5f\cos\beta + \frac{R_1 R_2 R_3}{r_2 r_3 (R_1 + r_1)} \sin\alpha - \delta \frac{R_2 R_3}{r_2 r_3 (R_1 + r_1)} \cos\alpha \right) - \frac{M_C}{r_3} + \frac{MR_3}{r_3 r_2}$$

согласно теореме (1), получаем

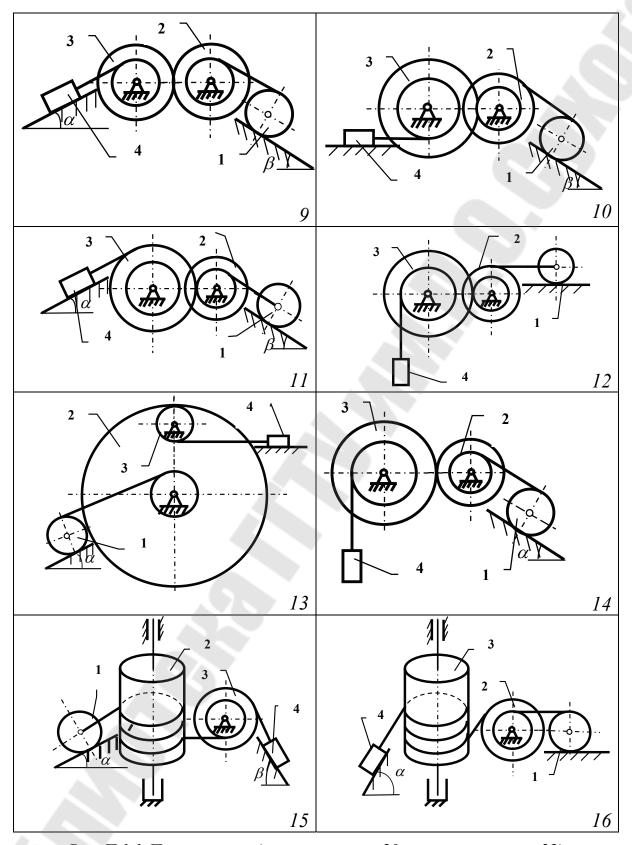
$$m^* v_{C1}^2 = F^* s,$$

откуда

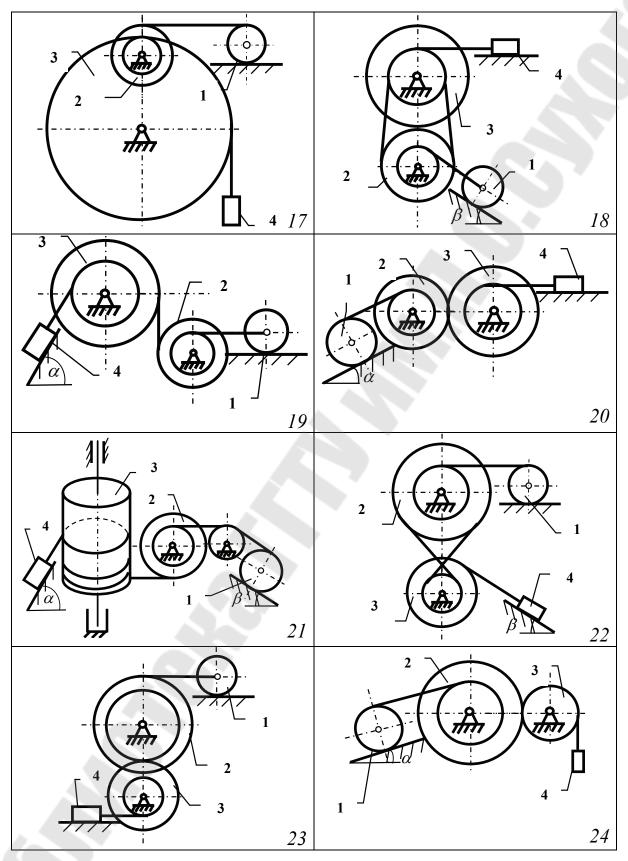
$$\upsilon_{C1} = \sqrt{\frac{F^*s}{m^*}}.$$

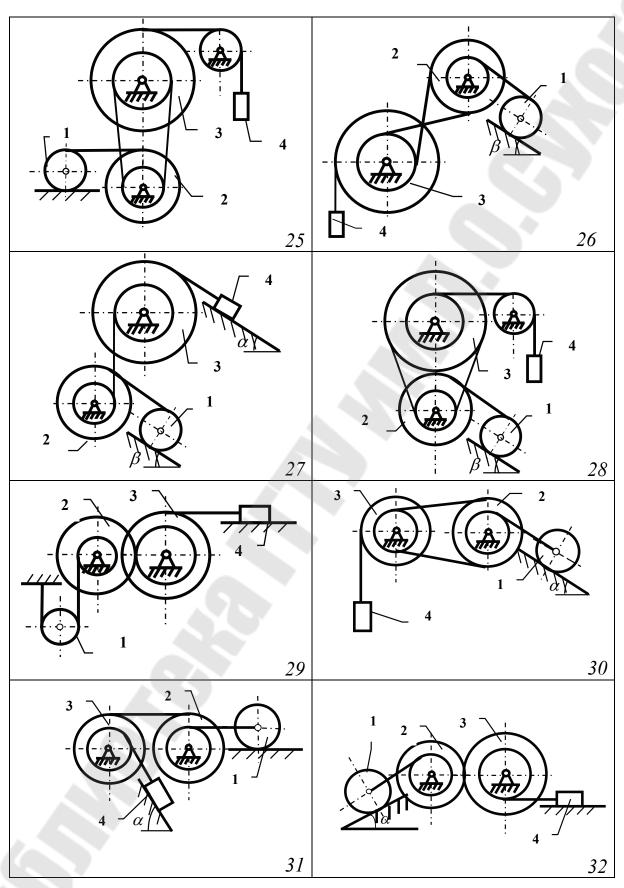

Подставляя числовые значения, получаем:

$$\upsilon_{C1} = \sqrt{\frac{F^*s}{m^*}} = \sqrt{\frac{s(6,066 + 0,884127mg)}{1,92428m}} = \sqrt{\frac{46,812}{3,8856}} = 3,47 \text{ m/c}.$$


Литература

- 1. Тарг, С. М. Краткий курс теоретической механики / С. М. Тарг. Москва : Высш. шк., 1986. 416 с.
- 2. Бутенин, Н. В. Курс теоретической механики / Н. В. Бутенин, Я. Л. Лунц, Д. Р. Меркин. Санкт-Петербург : Лань, 1998. 730 с.
- 3. Яблонский, А. А. Курс теоретической механики. В 2 ч. Ч. 1 / А. А. Яблонский. Москва : Высш. шк., 1984. 343 с.
- 4. Старжинский, В. М. Теоретическая механика: учебник: краткий курс по полной программе втузов / В. М. Старжинский. Москва: Наука, 1980. 464 с.
- 5. Сборник заданий для курсовых работ по теоретической механике / А. А. Яблонский [и др.]. Москва : Высш. шк., 2004. 384 с.

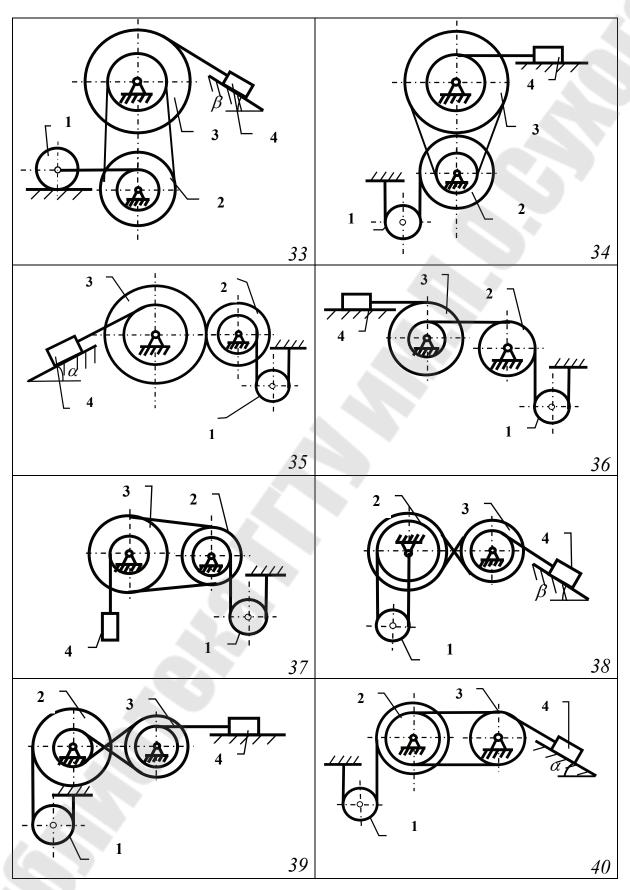
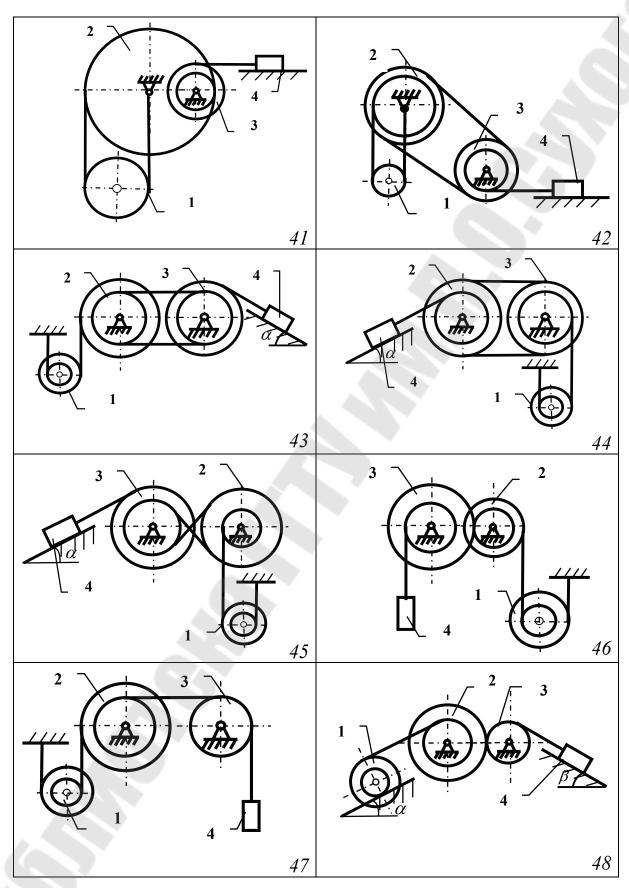
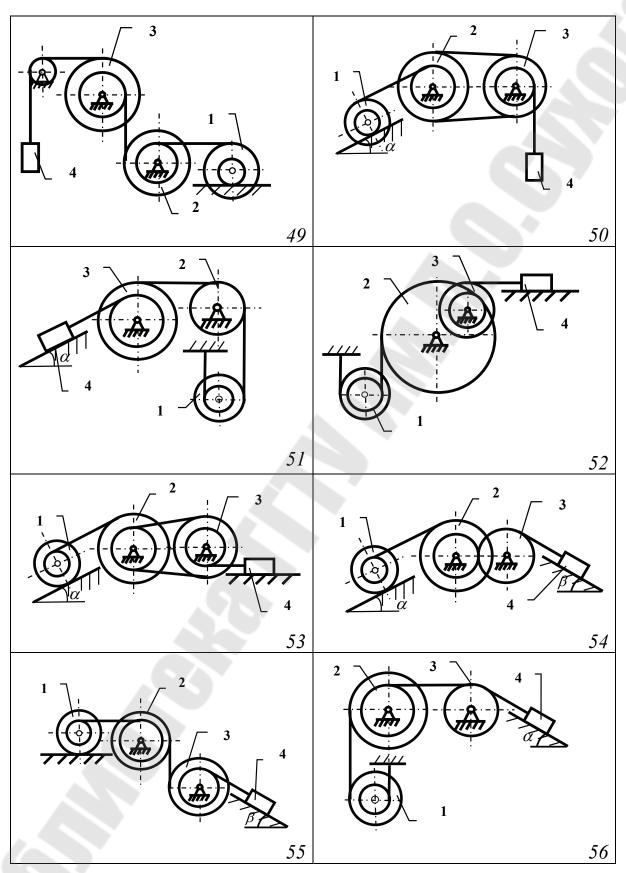

Приложение 1

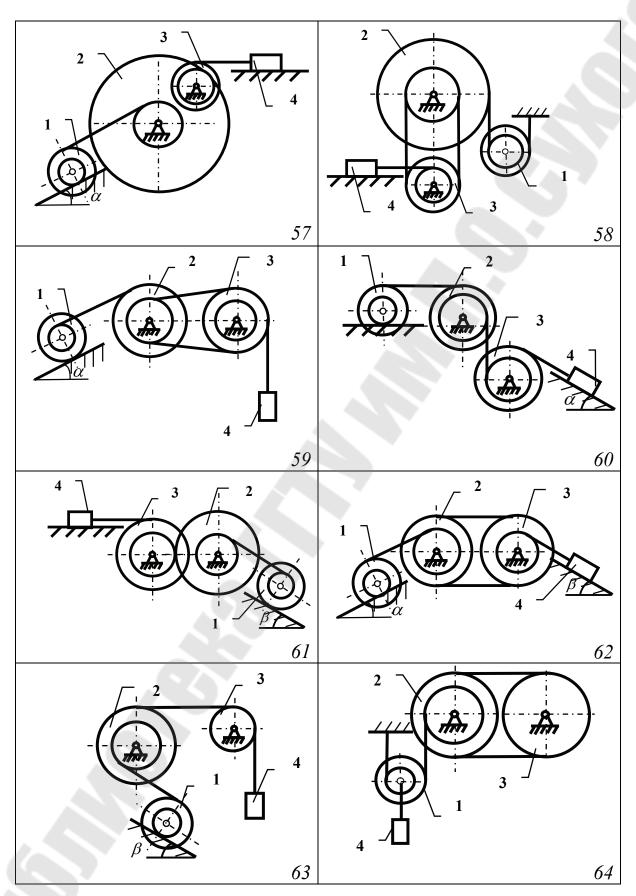

 $Puc.\ \Pi.1.1.$ Варианты индивидуальных заданий (продолжение см. на с. 21–31, окончание см. на с. 32)

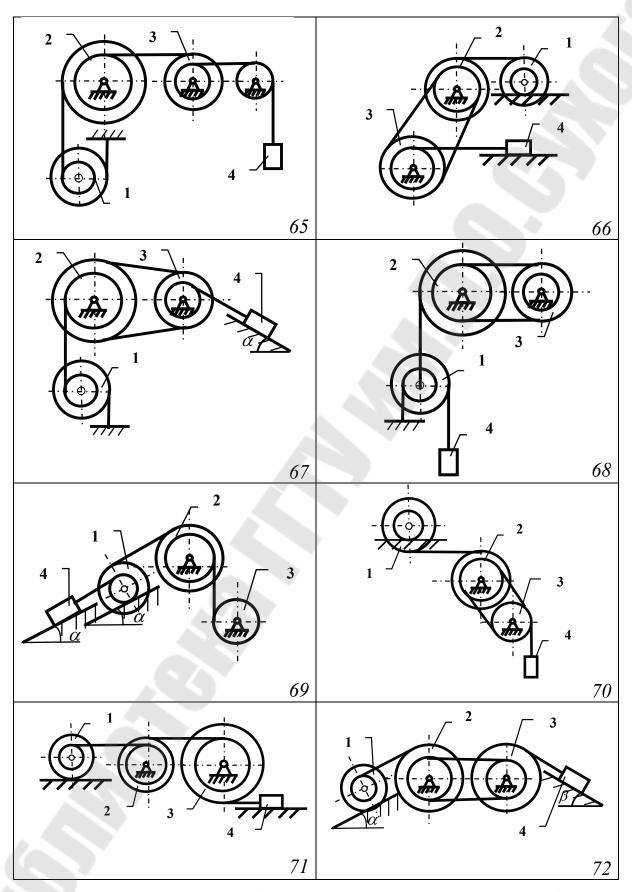
 $Puc.\ \Pi.1.1.\ \Pi$ родолжение (начало см. на с. 20, окончание — на с. 32)

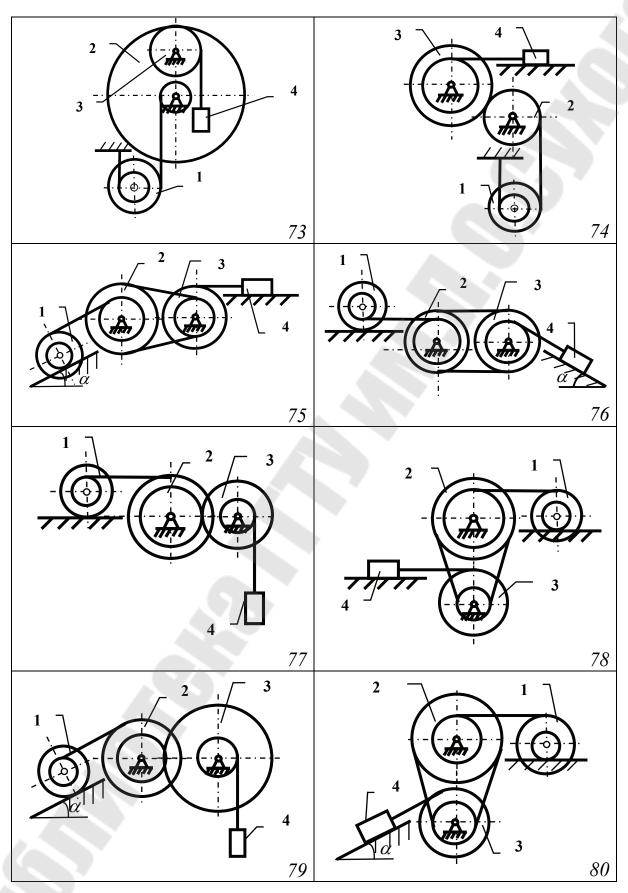
 $Puc.\ \Pi.1.1.\ \Pi$ родолжение (начало см. на с. 20, окончание – на с. 32)

 $Puc.\ \Pi.1.1.\ \Pi$ родолжение (начало см. на с. 20, окончание – на с. 32)


Рис. П.1.1. Продолжение (начало см. на с. 20, окончание на с. 32)


 $Puc.\ \Pi.1.1.\ \Pi$ родолжение (начало см. на с. 20, окончание – на с. 32)


 $Puc.\ \Pi.1.1.\ \Pi$ родолжение (начало см. на с. 20, окончание – на с. 32)

 $Puc.\ \Pi.1.1.\ \Pi$ родолжение (начало см. на с. 20, окончание – на с. 32)

 $Puc.\ \Pi.1.1.\ \Pi$ родолжение (начало см. на с. 20, окончание – на с. 32)

 $Puc.\ \Pi.1.1.\ \Pi$ родолжение (начало см. на с. 20, окончание – на с. 32)

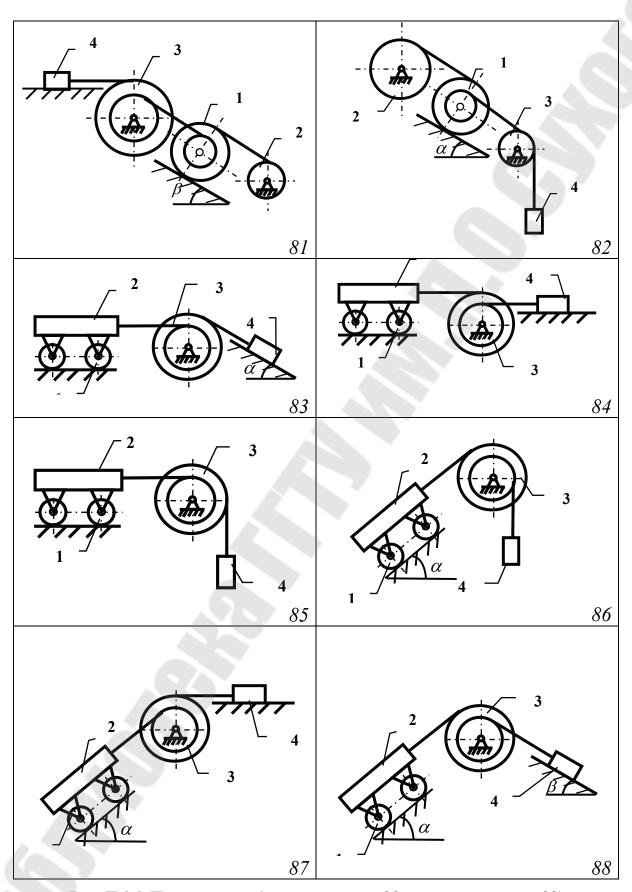
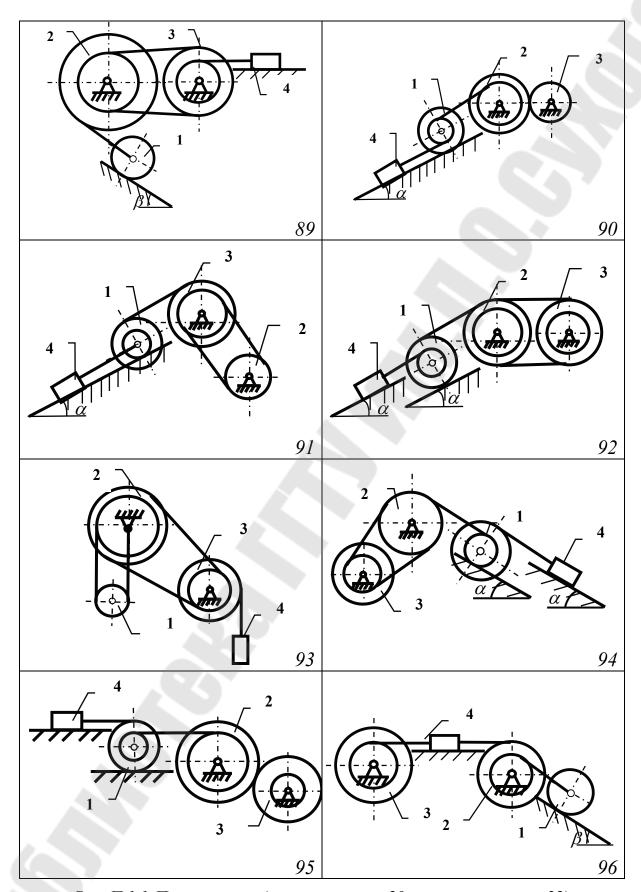
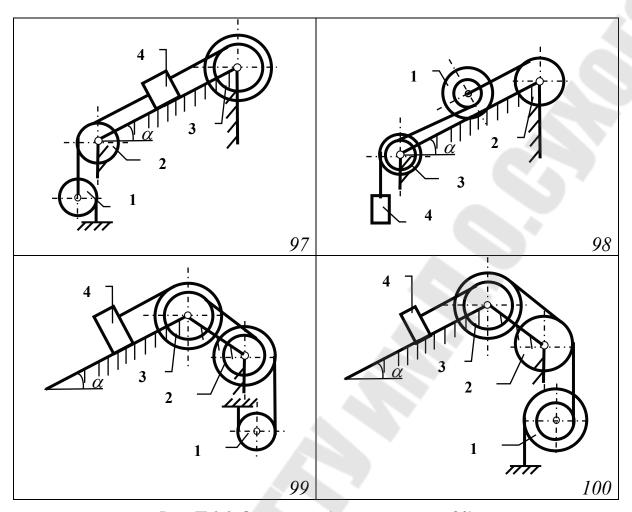




Рис. П.1.1. Продолжение (начало см. на с. 20, окончание – на с. 32)

 $Puc.\ \Pi.1.1.\ \Pi$ родолжение (начало см. на с. 20, окончание – на с. 32)

Рис. П.1.1. Окончание (начало см. на с. 20)

Приложение 2

Таблица П.2.1 Таблица исходных данных для индивидуальных заданий (по вариантам)

No	m_1	m_2	m_3	m_4	R_1	r_1	R_2	r_2	R_3	r ₃	α	β	i_{ξ_1}	i_{x2}	i_{x3}	f	δ	S
		К	ır		J		C	M			гр	ад		СМ		3	СМ	M
1	2 <i>m</i>	2 <i>m</i>	4 <i>m</i>	$\frac{1}{2}m$	25	10	30	15	45	30	30	45	15	20	25	0,1	0,3	1
2	m	$\frac{1}{4}m$	m	$\frac{1}{5}m$	30	15	20	18	25	15	45	60	12	10	15	0,15	0,2	1,5
3	m	1,5 <i>m</i>	2 <i>m</i>	m	35	20	35	15	45	30	60	30	30	20	12	0,1	0,3	2
4	m	1,5 <i>m</i>	1,5 <i>m</i>	2 <i>m</i>	40	15	25	15	30	15	45	60	15	12	20	0,12	0,4	1
5	m	2 <i>m</i>	m	m	45	25	55	25	35	20	30	45	20	15	12	0,15	0,2	3
6	m	$\frac{1}{2}m$	$\frac{1}{4}m$	$\frac{1}{6}m$	25	10	50	20	40	15	60	45	12	15	20	0,2	0,3	4
7	m	$\frac{1}{6}m$	$\frac{1}{4}m$	m	20	10	45	25	60	30	30	45	12	30	20	0,1	0,25	2
8	2 <i>m</i>	1,5 <i>m</i>	m	$\frac{1}{4}m$	30	10	45	12	50	20	30	60	15	20	30	0,2	0,35	1,5
9	m	4 <i>m</i>	2 <i>m</i>	$\frac{1}{2}m$	20	10	35	15	45	15	60	45	12	15	25	0,15	0,3	2
10	m	3 <i>m</i>	1,5 <i>m</i>	$\frac{1}{6}m$	15	5	50	20	35	20	45	30	20	25	15	0,17	0,2	1
11	m	1,5 <i>m</i>	m	m	20	10	35	15	50	25	30	60	12	12	25	0,1	0,4	3
12	1,5 <i>m</i>	2 <i>m</i>	m	1,5 <i>m</i>	40	25	30	15	50	30	45	60	10	35	20	0,12	0,3	4
13	m	3 <i>m</i>	$\frac{1}{2}m$	$\frac{1}{3}m$	50	20	45	20	60	45	60	45	12	25	20	0,2	0,25	2

№	m_1	m_2	m_3	m_4	R_1	r ₁	R_2	r ₂	R_3	<i>r</i> ₃	α	β	$oldsymbol{i}_{oldsymbol{\xi}1}$	i_{x2}	i_{x3}	f	δ	s
342	74	К	r.				C	M			гра	ад		СМ	I	,	СМ	M
14	m	2 <i>m</i>	3 <i>m</i>	4 <i>m</i>	40	15	35	25	30	15	45	60	14	20	25	0,12	0,4	2
15	m	m	1,5 <i>m</i>	1,5 <i>m</i>	35	15	25	10	55	30	30	45	20	30	15	0,1	0,2	4
16	$\frac{1}{2}m$	$\frac{1}{6}m$	$\frac{1}{4}m$	2 <i>m</i>	45	20	50	30	45	20	30	60	12	20	30	0,15	0,35	3
17	m	2 <i>m</i>	m	m	20	10	35	15	50	30	45	60	14	16	20	0,17	0,35	1,5
18	m	1,5 <i>m</i>	2 <i>m</i>	$\frac{1}{4}m$	30	15	45	15	40	15	45	30	12	14	20	0,1	0,3	1
19	4 <i>m</i>	m	1,5 <i>m</i>	$\frac{1}{2}m$	50	20	60	20	45	25	60	45	12	15	18	0,2	0,25	1
20	m	m	2 <i>m</i>	m	30	15	45	20	45	25	30	60	12	20	18	0,1	0,5	2
21	m	$\frac{1}{4}m$	m	$\frac{1}{6}m$	25	10	55	20	50	30	30	45	14	15	20	0,17	0,2	2,5
22	2 <i>m</i>	m	m	m	30	10	40	15	35	20	60	30	16	20	24	0,2	0,35	3
23	m	$\frac{1}{3}m$	2 <i>m</i>	$\frac{1}{2}m$	45	10	45	20	30	15	60	45	12	15	25	0,12	0,4	4
24	m	m	4 <i>m</i>	m	50	20	55	15	40	20	45	60	14	25	20	0,17	0,5	2
25	$\frac{1}{8}m$	2 <i>m</i>	m	$\frac{1}{5}m$	30	20	45	20	60	20	30	45	12	18	16	0,15	0,2	1
26	m	3 <i>m</i>	2 <i>m</i>	m	45	15	55	30	45	15	30	60	14	18	25	0,2	0,35	2,5
27	$\frac{1}{4}m$	1,5 <i>m</i>	$\frac{1}{6}m$	m	35	10	45	20	50	25	60	30	12	16	20	0,1	0,3	3
28	m	2 <i>m</i>	m	m	20	15	40	15	50	15	45	60	12	20	20	0,15	0,25	2
29	$\frac{1}{3}m$	m	2 <i>m</i>	$\frac{1}{5}m$	25	10	50	30	45	25	45	30	20	12	24	0,12	0,4	3

№	m_1	m_2	m_3	m_4	R_1	<i>r</i> ₁	R_2	<i>r</i> ₂	R_3	r ₃	α	β	$oldsymbol{i}_{\xi 1}$	i_{x2}	i_{x3}	f	δ	S
01=		К	EГ				C	M			гра	ад		СМ		,	СМ	M
30	m	$\frac{1}{8}m$	$\frac{1}{3}m$	m	30	20	60	30	50	35	30	60	16	12	18	0,2	0,35	2
31	m	4 <i>m</i>	2 <i>m</i>	1,5 <i>m</i>	30	15	35	15	45	20	60	45	12	24	20	0,17	0,3	1
32	m	m	m	m	30	20	45	20	50	25	30	45	12	16	24	0,1	0,2	1
33	m	2 <i>m</i>	m	m	40	30	55	15	60	40	45	60	24	30	14	0,1	0,4	4
34	m	2 <i>m</i>	2 <i>m</i>	m	30	15	45	15	40	20	30	60	15	20	18	0,1	0,25	1,5
35	$\frac{1}{4}m$	3 <i>m</i>	1,5 <i>m</i>	$\frac{1}{8}m$	45	25	50	25	45	15	60	45	20	12	20	0,15	0,35	2,5
36	$\frac{1}{6}m$	$\frac{1}{6}m$	m	$\frac{1}{4}m$	30	25	45	30	55	25	30	45	12	24	16	0,17	0,2	2,5
37	$\frac{1}{4}m$	$\frac{1}{5}m$	$\frac{1}{8}m$	m	40	20	50	30	40	20	45	60	16	20	15	0,2	0,3	4
38	4 <i>m</i>	m	m	3 <i>m</i>	30	15	55	15	45	20	60	30	20	24	30	0,12	0,4	3
39	m	m	3 <i>m</i>	m	60	35	45	20	30	15	60	45	14	16	20	0,2	0,35	3,5
40	m	2 <i>m</i>	m	m	30	15	55	30	45	20	30	45	12	16	24	0,17	0,5	2
41	3 <i>m</i>	4 <i>m</i>	m	m	45	20	30	10	45	15	45	60	15	18	14	0,15	0,4	1
42	m	$\frac{1}{3}m$	2 <i>m</i>	$\frac{1}{6}m$	50	10	55	15	35	15	30	60	20	18	16	0,12	0,2	2
43	m	4 <i>m</i>	1,5 <i>m</i>	m	35	15	35	15	40	20	60	30	14	20	12	0,1	0,25	2,5
44	2 <i>m</i>	m	3 <i>m</i>	2 <i>m</i>	45	30	30	10	35	20	60	45	12	12	15	0,12	0,5	3,5
45	$\frac{1}{4}m$	m	$\frac{1}{5}m$	m	25	20	45	30	25	10	45	60	14	16	20	0,17	0,3	1

№	m_1	m_2	m_3	m_4	R_1	r_1	R_2	r_2	R_3	r ₃	α	β	$i_{\xi 1}$	i_{x2}	i_{x3}	f	δ	S
312	7	к	Г				C	M			гра	ад		СМ		J	СМ	M
46	m	3 <i>m</i>	$\frac{1}{2}m$	$\frac{1}{8}m$	30	20	40	20	40	15	45	30	15	14	25	0,1	0,35	1,5
47	$\frac{1}{3}m$	m	m	m	60	30	50	25	45	20	30	45	20	16	18	0,15	0,4	3
48	m	2 <i>m</i>	$\frac{1}{6}m$	m	25	15	60	45	30	15	60	45	16	30	12	0,2	0,25	1
49	m	4 <i>m</i>	m	m	40	20	45	30	35	15	45	60	16	18	25	0,17	0,3	2
50	m	1,5 <i>m</i>	2 <i>m</i>	m	35	15	50	20	30	15	30	45	12	24	20	0,12	0,2	1
51	m	2 <i>m</i>	m	m	40	25	35	20	45	20	45	30	15	30	25	0,1	0,2	3
52	m	$\frac{1}{4}m$	$\frac{1}{8}m$	$\frac{1}{5}m$	30	15	30	15	40	15	30	45	12	24	16	0,17	0,35	4
53	m	m	3 <i>m</i>	$\frac{1}{2}m$	30	20	45	20	55	15	45	30	12	18	24	0,12	0,2	3
54	1,5 <i>m</i>	m	m	1,5 <i>m</i>	20	15	55	20	45	25	30	60	20	24	25	0,17	0,3	1
55	m	m	1,5 <i>m</i>	m	15	10	60	30	55	20	45	60	14	20	18	0,1	0,4	2
56	m	3 <i>m</i>	2 <i>m</i>	m	40	15	55	30	40	15	60	45	12	20	18	0,15	0,25	3
57	1,5 <i>m</i>	$\frac{1}{6}m$	$\frac{1}{4}m$	m	50	30	60	30	45	15	45	30	14	15	16	0,2	0,35	41
58	m	2 <i>m</i>	m	m	40	15	45	25	55	20	30	45	11	18	20	0,17	0,5	2
59	m	$\frac{1}{2}m$	$\frac{1}{5}m$	$\frac{1}{6}m$	60	40	50	30	40	20	30	60	20	16	24	0,12	0,2	3,5
60	m	$\frac{1}{5}m$	4 <i>m</i>	$\frac{1}{3}m$	50	35	45	15	35	20	45	30	14	25	30	0,17	0,4	2,5
61	m	m	3 <i>m</i>	m	30	10	55	20	45	20	45	60	14	20	24	0,1	0,3	2

№	m_1	m_2	m_3	m_4	R_1	r_1	R_2	r_2	R_3	<i>r</i> ₃	α	β	i_{ξ_1}	i_{x2}	i_{x3}	f	δ	S
312	7	к	Г				C	М			гра	ад		СМ		J	СМ	M
62	$\frac{1}{8}m$	2 <i>m</i>	m	m	25	15	50	30	55	20	45	30	16	18	20	0,2	0,2	3,5
63	m	m	4 <i>m</i>	3 <i>m</i>	40	25	45	20	45	15	30	45	15	16	18	0,15	0,35	1
64	m	1,5 <i>m</i>	$\frac{1}{8}m$	$\frac{1}{5}m$	55	30	40	15	20	10	60	30	12	16	18	0,1	0,5	1,5
65	m	2 <i>m</i>	m	3 <i>m</i>	65	40	45	15	45	15	60	45	11	18	16	0,15	0,3	4,5
66	m	4 <i>m</i>	m	m	15	10	35	20	45	25	30	60	12	20	18	0,2	0,4	2
67	m	3 <i>m</i>	m	m	30	10	45	25	50	30	45	60	20	18	24	0,17	0,25	1,5
68	3 <i>m</i>	m	2 <i>m</i>	m	50	25	50	30	35	15	45	60	16	12	11	0,12	0,4	2
69	m	$\frac{1}{4}m$	$\frac{1}{2}m$	$\frac{1}{5}m$	45	30	50	30	45	20	30	45	14	16	20	0,12	0,4	2,5
70	$\frac{1}{8}m$	2 <i>m</i>	m	m	35	15	40	15	50	25	30	60	16	14	20	0,2	0,35	1
71	m	3 <i>m</i>	3 <i>m</i>	$\frac{1}{3}m$	50	20	45	20	50	15	60	45	11	16	24	0,1	0,3	2
72	m	$\frac{1}{6}m$	2 <i>m</i>	$\frac{1}{8}m$	45	20	50	25	45	20	45	60	18	24	25	0,15	0,2	3,5
73	m	m	3 <i>m</i>	m	20	10	40	15	60	20	45	30	20	25	24	0,17	0,5	4,5
74	m	3 <i>m</i>	2 <i>m</i>	m	25	15	55	30	45	20	30	45	12	18	15	0,1	0,25	1
75	m	1,5 <i>m</i>	m	$\frac{1}{5}m$	30	15	45	20	30	15	30	60	11	24	12	0,15	0,3	1,5
76	m	4 <i>m</i>	m	m	60	45	60	30	40	20	60	45	18	30	12	0,2	0,35	3
77	2 <i>m</i>	$\frac{1}{4}m$	3 <i>m</i>	$\frac{1}{3}m$	40	25	55	30	45	15	45	30	16	12	14	0,17	0,3	3,5

N₂	m_1	m_2	m_3	m_4	R_1	<i>r</i> ₁	R_2	<i>r</i> ₂	R_3	<i>r</i> ₃	α	β	$oldsymbol{i}_{\xi 1}$	i_{x2}	i_{x3}	f	δ	S
312		к	Γ				C	M			гра	ад		СМ		J	СМ	M
78	m	m	$\frac{1}{6}m$	1,5 <i>m</i>	30	10	50	25	40	20	30	60	12	16	15	0,2	0,25	2,5
79	m	m	2 <i>m</i>	m	20	15	35	15	45	20	45	60	14	15	16	0,12	0,5	2
80	m	$\frac{1}{4}m$	$\frac{1}{2}m$	$\frac{1}{8}m$	15	10	30	15	50	25	30	45	20	18	16	0,15	0,4	3
81	m	$\frac{1}{6}m$	m	$\frac{1}{5}m$	10	8	50	40	45	15	60	45	25	20	12	0,1	0,2	1
82	3 <i>m</i>	2 <i>m</i>	m	m	30	15	50	30	45	20	45	60	18	14	16	0,2	0,35	1
83	m	m	$\frac{1}{3}m$	m	50	20	45	20	35	15	45	30	16	12	20	0,12	0,4	3
84	m	3 <i>m</i>	2 <i>m</i>	m	40	15	60	40	45	20	30	60	15	12	24	0,17	0,2	2
85	m	$\frac{1}{6}m$	m	$\frac{1}{6}m$	50	15	35	10	45	20	45	60	12	18	24	0,1	0,3	4
86	m	m	$\frac{1}{6}m$	m	60	40	60	40	45	15	30	45	11	20	12	0,15	0,25	3
87	m	2 <i>m</i>	4 <i>m</i>	m	40	20	50	35	50	25	60	45	14	24	16	0,2	0,35	2
88	m	$\frac{1}{5}m$	m	$\frac{1}{3}m$	55	30	45	25	60	30	30	60	16	12	18	0,17	0,2	1
89	m	$\frac{1}{6}m$	2 <i>m</i>	3 <i>m</i>	35	25	50	30	45	20	45	30	15	16	20	0,12	0,3	1,5
90	$\frac{1}{2}m$	1,5 <i>m</i>	3 <i>m</i>	4 <i>m</i>	25	10	45	20	45	25	45	30	12	14	16	0,15	0,25	2,5
91	m	$\frac{1}{8}m$	$\frac{1}{3}m$	$\frac{1}{5}m$	40	15	35	20	50	30	30	60	20	18	24	0,1	0,35	3

№	m_1	m_2	m_3	m_4	R_1	r ₁	R_2	r ₂	R_3	<i>r</i> ₃	α	β	$oldsymbol{i}_{\xi 1}$	i_{x2}	i_{x3}	f	δ	s
312	9	К	r				c	M			гра	ад		СМ		<i>J</i>	СМ	M
92	m	3 <i>m</i>	$\frac{1}{4}m$	m	50	35	50	30	60	35	60	45	24	25	30	0,2	0,4	2,5
93	1,5 <i>m</i>	m	1,5m	m	30	20	45	20	55	25	45	30	18	16	15	0,12	0,35	1,5
94	m	2 <i>m</i>	m	$\frac{1}{3}m$	25	15	30	15	50	30	30	45	20	24	25	0,1	0,25	2
95	m	$\frac{1}{6}m$	$\frac{1}{2}m$	$\frac{1}{5}m$	30	10	45	25	45	20	30	60	16	18	24	0,15	0,3	2,5
96	m	$\frac{1}{8}m$	1,5 <i>m</i>	m	55	25	50	30	40	20	60	45	12	16	25	0,12	0,35	1,5
97	m	3 <i>m</i>	2 <i>m</i>	m	65	30	60	20	50	30	30	45	14	15	20	0,2	0,2	1
98	$\frac{1}{2}m$	$\frac{1}{8}m$	$\frac{1}{6}m$	$\frac{1}{3}m$	45	20	50	25	50	35	30	60	15	18	18	0,1	0,3	2
99	2 <i>m</i>	$\frac{1}{4}m$	2 <i>m</i>	$\frac{1}{5}m$	35	15	45	20	45	15	60	45	16	16	24	0,12	0,25	4
100	1,5 <i>m</i>	2 <i>m</i>	3 <i>m</i>	$\frac{1}{5}m$	20	10	50	35	30	20	45	60	20	16	18	0,15	0,2	3
101	3 <i>m</i>	$\frac{1}{5}m$	2 <i>m</i>	$\frac{1}{5}m$	30	15	40	25	40	25	30	45	12	14	22	0,12	0,2	2,5
102	1,5 <i>m</i>	3 <i>m</i>	3 <i>m</i>	$\frac{1}{5}m$	20	10	20	15	35	25	45	45	22	13	16	0,10	0,3	1
103	m	1,5 <i>m</i>	2 <i>m</i>	$\frac{1}{3}m$	35	15	40	20	35	15	30	60	11	14	11	0,20	0,12	2,5
104	m	2 <i>m</i>	m	3 <i>m</i>	20	10	50	25	45	20	60	45	20	15	24	0,15	0,14	1,5

4	_
نر	$\overline{}$

Nº	m_1	m_2	m_3	m_4	R_1	<i>r</i> ₁	R_2	r_2	R_3	<i>r</i> ₃	α	β	$oldsymbol{i}_{\xi 1}$	i_{x2}	i_{x3}	f	δ	S
- 1	7	к	Г				C	M			гра	д		см		,	СМ	M
105	$\frac{1}{5}m$	1,5 <i>m</i>	$\frac{1}{8}m$	$\frac{1}{5}m$	20	10	45	20	30	15	45	60	24	25	20	0,10	0,3	2
106	m	m	$\frac{1}{4}m$	$\frac{1}{6}m$	40	25	60	30	50	25	30	45	22	20	12	0,3	0,1	1
107	1,5 <i>m</i>	$\frac{1}{4}m$	$\frac{1}{6}m$	m	50	20	35	15	40	20	60	45	12	18	14	0,15	0,2	3
108	2 <i>m</i>	$\frac{1}{4}m$	$\frac{1}{5}m$	$\frac{1}{8}m$	45	20	40	20	50	25	45	30	14	16	15	0,20	0,35	2
109	3 <i>m</i>	$\frac{1}{6}m$	3 <i>m</i>	3 <i>m</i>	40	15	45	25	35	15	30	45	16	12	12	0,25	0,4	2
110	$\frac{1}{5}m$	2 <i>m</i>	1,5 <i>m</i>	$\frac{1}{4}m$	35	20	50	25	45	20	45	60	15	11	16	0,10	0,5	1,5

Примечание. Внешний момент, движущую силу и момент сил сопротивления, приложенные к телам 2 и 3, выбрать самостоятельно. Радиусы инерции $i_{\xi 1}$, $i_{x 2}$ и $i_{x 3}$ даны относительно центральных осей, проходящих перпендикулярно плоскости чертежа. В вариантах 83–88 массы каждого из четырех колес 1 одинаковы.

Содержание

1. Теорема об изменении кинетической энергии системы	3
2. Варианты заданий	6
3. Примеры решения задач	7
Литература	19
Приложение 1	20
Приложение 2	33

Учебное издание

Шабловский Олег Никифорович **Иноземцева** Наталья Владимировна

ДИНАМИКА

Практикум по курсу «Теоретическая механика» для студентов инженерно-технических специальностей дневной и заочной форм обучения

Электронный аналог печатного издания

 Редактор
 Н. И. Жукова

 Компьютерная верстка
 Н. Б. Козловская

Подписано в печать 20.11.09.

Формат 60х84/₁₆. Бумага офсетная. Гарнитура «Таймс». Ризография. Усл. печ. л. 2,56. Уч.-изд. л. 1,78. Изд. № 173.

E-mail: ic@gstu.gomel.by http://www.gstu.gomel.by

Издатель и полиграфическое исполнение: Издательский центр учреждения образования «Гомельский государственный технический университет имени П. О. Сухого».

ЛИ № 02330/0549424 от 08.04.2009 г. 246746, г. Гомель, пр. Октября, 48.