МЕХАНИКА И ЭЛЕКТРОМЕХАНИКА

УДК 621.313.3.1

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ АНАЛИЗА ЭЛЕКТРОПОТРЕБЛЕНИЯ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ

В. И. ЛУКОВНИКОВ, А. В. БЕСКРОВНЫЙ, А. Е. СПОРИК

Гомельский государственный технический университет имени П. О. Сухого, Республика Беларусь

В работах [1, 2] описаны математические модели обобщенного электромеханического преобразователя (ЭМП) периодического движения в форме Коши по методу мгновенных временных и пространственных составляющих в статорной системе координат α , β . Эти модели напрямую для комплексного анализа энергетики ЭМП не пригодны, так как они, во-первых, учитывают только способы параметрического возбуждения периодически перемещающихся магнитных полей, а во-вторых, не определяют порядок расчета энергообмена.

Для исследуемых в последнее время маятниковых автоколебательных электроприводов тоже разработаны математические модели [3-5], но и они не ориентированы на анализ электропотребления и не охватывают ряд других эффективных способов создания колебательного движения.

В связи с изложенным, в данной работе предлагается универсальная математическая модель для анализа электромеханического преобразования энергии в ЭМП в виде асинхронных двигателей периодического движения на базе следующих блоков дифференциально-алгебраических уравнений:

- уравнения, моделирующие ЭДС источников электропитания статорных обмоток АД при различных способах создания колебательного и автоколебательного движения;
- система дифференциальных уравнений электрического равновесия АД, записанная в потокосцеплениях статорных и роторных обмоток в координатах α, β ;
- дифференциальные уравнения механического равновесия АД, учитывающие силы сухого и жидкостного трения, инерционную, а также маятниковую или пружинную позиционную нагрузки;
- алгебраические уравнения расчета параметров модели, фазных токов по потокосцеплениям и энергетических показателей по обобщенному КПД.

Первый блок математической модели представлен в таблице 1, в которой записаны аналитические выражения в непреобразованной (фазной) и преобразованной (статорной α, β) системах координат для статорных ЭДС восьми вариантов создания колебательного и автоколебательного движения (вентильный электропривод повторяет в коммутационном варианте автоколебательный и колебательный электроприводы).

В этих выражениях использованы обозначения:

 E_m – амплитуда фазной ЭДС сети; ω_I – несущая частота сети; Ω – угловая моделирующая частота сети; t_I и t_2 – моменты времени вентильной коммутации ЭДС.

Уточним, что автоколебания при трехфазном и однофазном электропитании статорных обмоток возникают лишь при наличии маятниковой или пружинной нагру-

зок на валу, причем, для однофазного режима необходимо начальное отклонение вала (ротора) от положения равновесия [3-5]. В противном случае, возникает вращательное движение.

Таблица 1 Соотношения для статорных ЭДС безредукторных асинхронных электроприводов

ЭДС		Типы электроприводов				
		автоколебательный		колебательный		
		трехфазное	однофазное	линейная фазовая	балансная ампли-	
		включение	включение	модуляция	тудная модуляция	
Фазная система координат	e_A	$Em \cdot \sin(\omega_1 t)$	$Em \cdot \sin(\omega_1 t)$	$Em \cdot \sin(\omega_1 t)$	$Em \cdot \sin(\omega_1 t)$.	
		·		-	$\sin(\Omega t)$	
	e_B	Em ·	$Em \cdot$	$Em \cdot \sin(\omega_1 t + \Omega t)$	$Em \cdot \cos(\omega_1 t)$.	
		$\sin(\omega_1 t + 120^\circ)$	$\sin(\omega_1 t + 180^\circ)$		$\left \sin(\Omega t)\right $	
	e_C	$Em \cdot$	$Em \cdot$	$-Em \cdot \sin(\omega_1 t + \Omega t)$	$Em \cdot \cos(\omega_1 t)$.	
		$\sin(\omega_1 t - 120^\circ)$	$\sin(\omega_1 t - 180^\circ)$	_	$\left \sin(\Omega t)\right $	
Система координат α-β	e_{α}	$Em \cdot \sin(\omega_1 t)$	$\frac{4}{3} Em \cdot \sin(\omega_1 t)$	$\frac{2}{3} Em \cdot \sin(\omega_1 t)$	$\frac{2}{3}Em$.	
					$\sin(\omega_1 t)\sin(\Omega t)$	
	e_{β}	$Em \cdot \cos(\omega_1 t)$	0	$\frac{2}{\sqrt{3}}Em$	$\frac{2}{\sqrt{3}}Em$.	
C				$\sin(\omega_1 t + \Omega t)$	$\cos(\omega_1 t) \cdot \left \sin(\Omega t) \right $	
Смещение нейтрали		0	$-\frac{2}{3}Em\cdot\sin(\omega_1t)$	$\frac{1}{3} Em \cdot \sin(\omega_1 t)$	$\frac{1}{3} Em \cdot \sin(\omega_1 t) \cdot$	
е _N или					$\sin(\Omega t)$	
нулевая						
последо-						
ность е						
1100111100						

Примечание. В вентильных электроприводах периодического движения справедливы эти же выражения для ЭДС во время подпитки:

а) для коммутации внутри периода колебаний
$$\frac{2\pi}{\Omega}$$
 :
$$e = \begin{cases} 0 \ \textit{npu} \ 0 \leq t \leq t_1, \ t_2 \leq t \leq 2 \cdot \frac{\pi}{\Omega}, \\ e \ \textit{npu} \ t_1 \leq t \leq t_2; \end{cases}$$

б) для коммутации внутри периода сети $\frac{2\pi}{\omega_1}$:

$$e = \begin{cases} 0 & npu \ 0 \le t \le t_1, \frac{\pi}{\omega_1} \le t \le \frac{\pi}{\omega_1} + t_1, \\ e & npu \ t_1 \le t \le \frac{\pi}{\omega_1}, \frac{\pi}{\omega_1} + t_1 \le t \le 2 \cdot \frac{\pi}{\omega_1}. \end{cases}$$

Второй и третий блоки математической модели могут быть представлены в виде следующей системы из шести нелинейных дифференциальных уравнений.

$$\begin{cases} \frac{d\Psi_{\alpha S}}{dt} = a_1 \cdot \Psi_{\alpha S} - a_2 \cdot \Psi_{\alpha R} + e_{\alpha}, \\ \frac{d\Psi_{\beta S}}{dt} = a_1 \cdot \Psi_{\beta S} - a_2 \cdot \Psi_{\beta R} + e_{\beta}, \\ \frac{d\Psi_{\alpha r}}{dt} = b_1 \cdot \Psi_{\alpha R} - b_2 \cdot \Psi_{\alpha S} - \omega \cdot \Psi_{\beta S}, \\ \frac{d\Psi_{\beta r}}{dt} = b_1 \cdot \Psi_{\beta R} - b_2 \cdot \Psi_{\beta S} - \omega \cdot \Psi_{\alpha S}, \\ \frac{d\omega}{dt} = \left[-\frac{G \cdot l}{\eta \cdot i \cdot J_{\Sigma}} \cdot \sin \varphi - \frac{H}{\eta \cdot i^2 \cdot J_{\Sigma}} \cdot \omega - \frac{M_{mp}}{\eta \cdot i \cdot J_{\Sigma}} \cdot sign(\omega) - \right. \\ \left. -\frac{C}{J_{\Sigma}} \cdot \varphi + \frac{3 \cdot a_2}{2 \cdot J_{\Sigma} \cdot R_S} \cdot \left(\Psi_{\alpha S} \cdot \Psi_{\beta R} - \Psi_{\beta S} \cdot \Psi_{\alpha R} \right) / p \right] \cdot p, \\ \frac{d\varphi}{dt} = \omega, \quad \omega(+0) = 0, \quad \varphi(+0) = \varphi_0 \neq 0. \end{cases}$$

Здесь обозначено:

 $\Psi_{\alpha S} \Psi_{\beta S}$, $\Psi_{\alpha R}$, $\Psi_{\beta R}$ – статорные и роторные потокосцепления по осям α и β , соответственно;

 e_{α} , e_{β} — статорные ЭДС по таблице 1;

 a_1 , a_2 , b_1 , b_2 – коэффициенты, рассчитываемые по параметрам схемы замещения;

 φ , ω – угол и скорость колебаний вала двигателя;

p — число пар полюсов;

 i, η – передаточное число и КПД редуктора;

G, l – вес и длина маятника;

 R_{S} – активное сопротивление фазной статорной обмотки;

 J_{Σ} – суммарный момент инерции ротора, маятника и нагрузки, приведенный к валу двигателя;

Н, С – коэффициенты жидкостного трения и жесткость пружины;

 M_{mn} – момент сухого трения.

Отметим, что при анализе автоколебательных режимов в АД с маятником на валу следует положить C=0, а для АД с пружиной на валу $G\cdot l=0$.

И, наконец, четвертый блок математической модели представим, с целью удобства пользования, в виде четырех систем алгебраических уравнений.

Первая система предназначена для расчета параметров блока (1).

$$\begin{cases} a_{1} = R_{S} \cdot L_{R} / (M^{2} - L_{S} \cdot L_{R}), \\ a_{2} = a_{1} \cdot M / L_{R}, \\ b_{1} = R_{R} \cdot L_{S} / (M^{2} - L_{S} \cdot L_{R}), \\ b_{2} = b_{1} \cdot M / L_{S}, \\ J_{\Sigma} = J_{\partial} + l^{2} \cdot \frac{G}{g} + J_{H} / i^{2} \cdot \eta, \\ L_{r} = X'_{2} + X_{m} / \omega_{1}, \\ L_{s} = X_{1} + X_{m} / \omega_{1}, \\ M = X_{m} / \omega_{1}, \end{cases}$$
(2)

где L_R, L_S, M — полные собственные индуктивности обмоток ротора, статора и их взаимная индуктивность;

 R_{S} , R_{R} , X_{I} , X'_{2} , X_{m} — параметры схемы замещения асинхронного электродвигателя; ω_{1} — синхронная скорость;

 J_{∂} , J_{H} — моменты инерции двигателя (ротора) и нагрузки;

g – ускорение земного притяжения.

Вторая система уравнений позволяет найти мощности, отдаваемые источником электропитания.

$$\begin{split} &i_{\alpha S} = \frac{1}{\sigma \cdot L_{s}} \cdot \Psi_{\alpha S} - \frac{M}{\sigma \cdot L_{s} \cdot L_{r}} \cdot \Psi_{\alpha R}, \\ &i_{\beta S} = \frac{1}{\sigma \cdot L_{s}} \cdot \Psi_{\beta S} - \frac{M}{\sigma \cdot L_{s} \cdot L_{r}} \cdot \Psi_{\beta R}, \\ &\sigma = 1 - \frac{X_{m}^{2}}{(X_{1} + X_{m}) \cdot (X_{2} + X_{m})}, \\ &p_{\jmath n}(t) = e_{\alpha}(t) \cdot i_{\alpha S}(t) + e_{\beta}(t) \cdot i_{\beta S}(t), \\ &P_{\jmath n} = \frac{1}{T_{\kappa O n}} \cdot \int\limits_{0}^{T_{\kappa O n}} p_{\jmath n}(t) \cdot dt, \\ &E_{\alpha} = \sqrt{\frac{1}{T_{\kappa O n}}} \cdot \int\limits_{0}^{T_{\kappa O n}} e_{\alpha}^{2}(t) \cdot dt, \\ &E_{\beta} = \sqrt{\frac{1}{T_{\kappa O n}}} \cdot \int\limits_{0}^{T_{\kappa O n}} e_{\beta}^{2}(t) \cdot dt, \\ &I_{\alpha} = \sqrt{\frac{1}{T_{\kappa O n}}} \cdot \int\limits_{0}^{T_{\kappa O n}} i_{\alpha}^{2}(t) \cdot dt, \\ &I_{\beta} = \sqrt{\frac{1}{T_{\kappa O n}}} \cdot \int\limits_{0}^{T_{\kappa O n}} i_{\beta}^{2}(t) \cdot dt, \\ &S_{\jmath n} = E_{\alpha} \cdot I_{\alpha} + E_{\beta} \cdot I_{\beta}, \\ &Q_{\jmath n} = \sqrt{S_{\jmath n}^{2} - P_{\jmath n}^{2}}. \end{split}$$

Здесь обозначено:

 $i_{\alpha S}$, $i_{\beta S}$ – мгновенные значения статорных фазных токов;

 σ – коэффициент затухания по Блонделю;

 E_{α} , E_{β} , I_{α} , I_{β} — действующие значения статорных фазных ЭДС и токов;

 $p_{3\pi}(t)$ — мгновенное значение электрической мощности;

 $P_{\text{эл}}, Q_{\text{эл}}, S_{\text{эл}}$ – активная реактивная и полная мощности;

 $T_{\kappa o n}$ — период колебаний ротора АД.

Третья система уравнений предназначена для определения мощностей, отдаваемых двигателем в нагрузку.

$$\begin{cases} p_{Mex}(t) = \omega(t) \cdot M_{Mex}(t), \\ P_{Mex} = \frac{1}{T_{KON}} \cdot \int_{0}^{T_{KON}} p_{Mex}(t) \cdot dt, \\ \Omega = \sqrt{\frac{1}{T_{KON}}} \cdot \int_{0}^{T_{KON}} \omega^{2}(t) \cdot dt, \\ M_{\partial e \ddot{u} c} = \sqrt{\frac{1}{T_{KON}}} \cdot \int_{0}^{T_{KON}} M_{Mex}^{2}(t) \cdot dt, \\ S_{Mex} = \Omega \cdot M_{\partial e \ddot{u} c}, \\ Q_{Mex} = \sqrt{S_{Mex}^{2} - P_{Mex}^{2}}. \end{cases}$$

$$(4)$$

В этой системе уравнений введены следующие обозначения:

 $p_{\text{mex}}(t)$ — мгновенное значение механической мощности;

 $P_{\text{мех}}, Q_{\text{мех}}, S_{\text{мех}}$ – активная, реактивная и полная механические мощности;

 $M_{\partial e \check{u}c}$. Ω — действующие значения момента и скорости колебаний.

И, наконец, последняя система уравнений позволяет определить энергетические показатели АД колебательного движения в соответствии с понятием обобщенного КПД [4].

$$\begin{cases}
\eta_{e} = \frac{S_{Mex}}{S_{3,n}} = \left[\frac{P_{Mex}^{2}}{S_{3,n}^{2}} + \frac{Q_{Mex}^{2}}{S_{3,n}^{2}} + \frac{T_{Mex}^{2}}{S_{3,n}^{2}} \right]^{\frac{1}{2}}, \\
\eta_{a3} = \frac{P_{Mex}}{S_{3,n}} = \frac{P_{Mex}}{P_{3,n}} \cdot \frac{P_{3,n}}{S_{3,n}} = \eta_{a} \cdot k_{a}, \\
\eta_{p3} = \frac{Q_{Mex}}{S_{3,n}} = \frac{Q_{Mex}}{Q_{3,n}} \cdot \frac{Q_{3,n}}{S_{3,n}} = \eta_{p} \cdot k_{p}, \\
\eta_{u3} = \frac{T_{Mex}}{S_{3,n}} = \frac{T_{Mex}}{T_{3,n}} \cdot \frac{T_{3,n}}{S_{3,n}} = \eta_{u} \cdot k_{u}, \\
\eta_{e} = \sqrt{\eta_{a}^{2} \cdot \kappa_{a}^{2}} + \eta_{p}^{2} \cdot \kappa_{p}^{2} + \eta_{u}^{2} \cdot \kappa_{u}^{2}.
\end{cases} (5)$$

Здесь через η_9 обозначен полный энергетический обобщенный КПД, а через η_{a9} , η_{u9} — его энергетические составляющие по активной, реактивной и мощности искажения. Эти составляющие далее представляются в (5) через соответствующие коэффициенты мощности κ_a , κ_p , κ_u и обычные КПД η_a , η_p , η_u для различных видов мощностей.

Итак, таблица 1 и системы диференциально-алгебраических уравнений (1-5) представляют собой полную математическую модель АД периодического движения, ориентированную на анализ и синтез энергообмена в нем.

На основе этой математической модели и программы Modeler 2.4, реализующей данный принцип анализа энергетических показателей, было произведено численное исследование энергетики колебательного привода на основе асинхронного электродвигателя типа АИР71А6У3. Этот двигатель имеет следующие параметры, приведенные к обмотке статора:

 X_m =880 Ом, X_1 =8,59 Ом, X_2 `=15,65 Ом, R_1 =7,44 Ом, R_2 `=5,73 Ом, ω_0 =314 рад/с, J_0 =0,003 кг·м².

Параметры нагрузки имели следующие номинальные значения:

G=40 H, l=0,4 м, J_H =0,003 кг·м², H=0,2 H·м·с, M_{mp} =0,05 H·м, i=5, η_p =0,85.

Частота вынужденных колебаний задавалась равной 1 Гц.

По результатам исследования можно сказать следующее: увеличение механических нагрузок (вес маятника, длина, момент трения, коэффициент демпфирования) приводит к уменьшению КПД; влияние амплитуды напряжения неоднозначно, поэтому каждый случай необходимо рассматривать детальнее.

Без импульсной подпитки наиболее лучшим, с точки зрения КПД, является способ балансно-амплитудной модуляции.

При импульсной подпитке за период сети происходит увеличение КПД при увеличении угла открывания, но система теряет устойчивость и затухает.

Наиболее интересен случай импульсной подпитки за период колебаний. При этом способе были достигнуты самые высокие КПД (35 %) при способе возбуждения балансно-амплитудной модуляции. Ниже приведена таблица 2, в которой представлены параметры энергетики колебательного привода при одинаковой нагрузке (нагрузка стандартная).

Таблица 2 Зависимость энергетических КПД от типа питания привода

	Однофазные	Трехфазные	Линейно-	Балансно-
	автоколебания	автоколебания	фазовая	амплитудная
			модуляция	модуляция
η_e	0,01788	0,1385	0,10588	0,15832
η_{ae}	0,01085	0,0031	0,00336	0
η_{pe}	0,01422	0,13846	0,10582	0,15832

Литература

- 1. Луковников В.И., Середа В.П., Тодорев В.В. Моделирование периодических режимов асинхронных электродвигателей безредукторного привода //Электричество.- 1992.- № 5.- С. 31-35.
- 2. Луковников В.И. Моделирование безредукторных электроприводов периодического движения //Материалы МНТК «Современные проблемы машиноведения».-Гомель: ГПИ, 1996.- С. 187.
- 3. Луковников В.И., Тодорев В.В., Веппер Л.В. Автоколебательный режим однофазного асинхронного электродвигателя //Изв. ВУЗов и ЭО СНГ. Энергетика.- 1998.- № 2.- С. 45-49.
- 4. Луковников В.И., Тодорев В.В., Веппер Л.В. Моделирование автоколебательного асинхронного электропривода //Изв. ВУЗов и ЭО СНГ. Энергетика.- 1998. № 3.- С. 32-42.
- 5. Луковников В.И., Веппер Л.В., Спорик А.Е. Обобщенная модель маятникового электропривода //Материалы МНТК «Современные проблемы машиноведения».- Гомель: ГПИ, 1998. С. 86-88.

Получено 01.11.2000 г.