
Доклады Академии Наук СССР
1951. Том LXXVIII, № 2

МАТЕМАТИКА

В. А. ЯКУБОВИЧ

КРИТЕРИИ УСТОЙЧИВОСТИ ДЛЯ СИСТЕМЫ ДВУХ УРАВНЕНИЙ 
КАНОНИЧЕСКОГО ВИДА С ПЕРИОДИЧЕСКИМИ КОЭФФИЦИЕНТАМИ

(Представлено академиком И. Г. Петровским 15 III 1951)

Рассматривается система

di др ’ dt dq ’ ' '

где § — вещественная квадратическая форма переменных р и q

^-^q2 + ^(t)qp + ^ р\ (2)

a (t), В (t), у (Д — непрерывные периодические периода w функции.
Следуя М. Г. Крейну (’), систему (1) будем также записывать в век­

торной форме

(»)

Из (2) следует, что в множестве О3 = {§} всех форм указанного 
вида подмножество О форм, для которых все решения соответствую­
щей системы (1) ограничены *, распадается на счетное число открытых 
связных компонент Оп (и = 0, ±1, ±2,...) (области устойчивости). 
Для того чтобы QQOn, необходимо и достаточно, чтобы для любого 
решения х соответствующего уравнения угол поворота за время to 
был заключен в пределах п~ <А^х^(гі А- 1)тс. Это основное утвержде­
ние будет все время использоваться в дальнейшем.

Пусть 6Л (t) — определенный по непрерывности argx(^); (ДЮ = 
= arc tg (q I р); Мх / dt = (qp - pq) / (p2 + q*) = 2£ / (p2 + q^, откуда

(з)
О о

Пусть Amin (0 и Атах (0 — наименьшее и наибольшее характеристиче­
ские числа матрицы Н, матрицы квадратичной формы 2®. Тогда Amin Ю 
< 2% / (р2 + q^ < Атах (О И

СО со

Amin (0 dt ^х ^тах (О dt. 
о о

(4)

* Исключая 
периода со.

случай, когда все решения периодические или антипериодические
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Отсюда получаем:

Критерий устойчивости 1. Если пк <j Атщ (t) dt <
О

О)

•С j hmn(t) dt <^(п 1) -к, то принадлежит п-й области устойчиво-
о

сти Оп (п = 0, +1, ±2, . .
Беря за § квадратичную форму § = + -у- р- и полагая q=y,

Р=~У, мы получаем из (1) уравнение

y" + h(t)y = O. (5)
Критерий 1 в этом случае даст следующий критерий устойчивости 

для уравнения (5).
Пусть п-к / w <; с (п + 1) 7и / со. Обозначим Е+ = Е (Л (t) с2),

Е_ = Е (h. (t) < с2). Если-^-^h (t) dt + с-m Е_<(п + 1)тс и — $ h(t}dt-y
Щ С Е.

с ■ т Е > п-к, то h(t)(~On (п = 0, 1, 2,...) (mЕ — лебеговская мера).
Пусть далее ©х — форма, зависящая от параметра X. Будем предпо­

лагать, что / дх существует и непрерывна по t.
Фиксируем начальное значение х (0) = а. Обозначим 0 (t, X) аргумент 

соответствующего решения. Найдем дО / дХ. Дифференцируя, находим, 
что дО / дХ = Д (t) / (х, %), где Д (t) = Det ||^-, х||. Из (1а) следует:

d дх г дхЖ1Т = ^+^Х- (6)

У равнение (6) — неоднородная линейная система относительно дх) дХ. 
Обозначая через X (t) матрицу фундаментальной системы решений 
уравнения (1а), определенную условием X (0) = Е, получим, по 
известной формуле:

дх с дН.^ = X(t)\x(s)-'J-^x(s)ds, 

о
откуда

A(Z) = Det

Д (t) = Det l| X (s) 1J x (s), a | ds = Det 
о о

Используя соотношение Det l| Ja, b || = (a, 
t / dH \

= f (__ * x, x I ds, или
M dX J

U1 J 
J~dxx^’ ds.

b), получим Д (t) —

b® _ _____ C / , , , , \ ds —__L_ C
ax _ (x(t),x(t)) 3 x (s)) P2+<12}

(s) 1J _2 x (s) ds> a , так как x(t) = X(t)a и DetA^^l 
о

о о

^x 
ax ds. (7)

Применяя последнюю формулу к §x = + (1 — X) §2, получим
следующую теорему.

Теорема сравнения. Пусть хг и х2 — решения уравнений (1) 
с формами и и хг (0) = х2 (0). Пусть (t, р, q) ^2(t, р, q) и 
хотя бы для одного t имеет место строгое неравенство. Тогда 
вектор Xi (t) вращается впереди вектора %2 (0> arg xt (t) arg х2 (t) 
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и 9 г г^е w <px,~ соответствующие углы поворота за 
время со.

Легко проверить, что эта теорема для уравнения (5) дает обычную 
теорему сравнения.

Обозначим далее, как и в (2), Пл* множество форм, для которых 
все решения периодические или антипериодические и вращаются на 
угол mz за время со.

* Для уравнения (5) теорема 2 и достаточность в теореме 1 следуют из работ 
Н. В. Адамова (3).

Теорема 1. Для того чтобы. &£Оп, необходимо и достаточно, 
чтобы нашлись формы @Л€П„*  и @л+і € ПЛД такие, что

&п & -С ®л+ь (8)

причем каждое из неравенств хотя бы для одного t превращается 
в строгое неравенство.

Теорема 2 (критерий устойчивости 2). Пусть 
и §2бОл. Тогда и &ЕОп*.

Теорема 2 и достаточность в теореме 1 вытекают из теоремы срав­
нения. Необходимость в теореме 1 доказывается довольно сложно. 
Заметим, что если &€Оп, то найдется бесконечно много форм

Оп таких, что Это следует из того, что Оп — откры­
тое множество.

Для данной формы (t, р, q) можно построить наибольшую форму 
с постоянными коэффициентами ©ДР, <7Х$Ж р, q) и наименьшую 
форму с постоянными коэффициентами (р, q)^-^ (t, р, q). Для форм 
с постоянными коэффициентами легко определить их принадлеж­
ность Оп. Если (р, q), §2 (р, q) € Оп, то, по теореме 2, и § (t, р, q) € Оп.

Теорему 1 также можно применить, сравнивая § с формами с посто­
янными коэффициентами. Найдем общий вид форм @Л€ПЛ* с постоян­
ными коэффициентами.

Пусть ®Л€ПЛ* и JL — соответствующая матрица в уравнении (1а). 
Для фундаментальной системы решений X (t) = eJLt имеем X (со) = 
= ± (0) = ± Д Следовательно, JL = -у In (± £) = у SJS~\ k =0, ±1,—' 
S—-любая матрица с детерминантом 1, k-к — угол поворота любого 
решения за время со. Следовательно, k = п, L =~- Д1 SJS^1, L — мат­
рица формы 2®л. Отсюда общий вид ®л дается выражением:

(р, q) = g- [« + ₽2) р2 + 2 (ал Y„ + МЛ РЧ + (/„ + ЭД Ф2], (9) 

где осл, $п, Ую — любые числа, удовлетворяющие условию ал у„ — 
_рл 8„ = 1.

тс “ фБеря за ®л —-gy р2 + у ^2, получим для уравнения (5) известный 
критерий Н. Е. Жуковского:

Если «2~2 / со2 Р (£) <; (дI)2 к2 / со2, то й(^)€Ол.
Можно получить общий вид форм ®л с переменными коэффициен­

тами и, тем самым, «выписать» все -б, для которых решения огра­
ничены.

Осцилляционная теорема. Обозначим hMn (t, X) и hm^ (t, X) 
наименьшее и наибольшее характеристические числа формы (t, р, q) 
и Amin (А X) — наименьшее характеристическое число формы д& / дХ.
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Предположим, что:
I. Amin (t, Х)ф О (при фиксированном X).

и. $ Amin (t, X) dt -» + ОО при X -> + оо. 
о
СО

III. Атах (t, Л) dt — ОО При X — ОО.
О

Тогда существует последовательность собственных чисел

простирающаяся в обе стороны на бесконечность, обладающая 
следующими свойствами:

1. Собственные числа с четными нижними индексами являются 
собственными значениями краевой задачи х(и)=х(0) и с нечетными 
нижними индексами — собственными значениями краевой задачи 
х(ы) = — х (0).

2. Если Хп Х„, то для X = Хп (и для X = Х„) имеется только 
одно периодическое или антипериодическое решение периода ы. 
Если сп = Хл, то все решения периодические или антипериодические 
периода со. У собственных векторов — решений, соответствующих 
собственным значениям с нижним индексом п, угол поворота за 
время и ух = пп.

3. Интервалы Хл<Х<Х„+і суть интервалы устойчивости (для 
этих X все решения ограничены), интервалы Хл<;х<Хл являются 
интервалами неустойчивости (имеются неограниченные решения).

Доказательство опирается на основную теорему в (2). Подсчитывая 
углы поворота ух(У), получим из (4) и (7), что при изменении X от — оо 
до + оо <рх(Х), монотонно возрастая, изменяется от —оо до + оо. 
Отсюда следует, что точка при изменении X от —оо до + оо про­
бегает трехмерную модель пространства G3 слева направо, рассекая 
каждую из поверхностей П„ = Пл U П„* U Пл слева направо. Это и 
является перефразировкой утверждения осцилляционной теоремы.

Для = Х^х 4- достаточным для выполнения осцилляционной 
теоремы является одно условие I. В этом случае II и III являются 
следствиями I.

Можно привести нетривиальный пример, когда АШ|П^0 и осцилля- 
ционная теорема неверна. Условие I будет выполнено, если будут выпол-

со

йены условия Крейна (х) ^>0 и ( dt~>0. В случае линейной зави-
0

симости от параметра X для собственных чисел Хл = Хл, Хл из (4) и 
условия (?х (Х„) = mt легко получить оценку, которая показывает, что 
Хл~п при «~> + оо.

При других предположениях тем же методом можно получить 
другие осцилляционные теоремы.
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И I 1951
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