
Доклады Академии Наук СССР
1951. Том LXXVII, № 3

МАТЕМАТИКА
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ОБ УРАВНЕНИЯХ ЭЛЛИПТИЧЕСКОГО ТИПА
(Представлено академиком В. И. Смирновым 20 I 1951)

Хорошо известна теорема о среднем для гармонических функций, 
а также ряд обращений этой теоремы. В. Феллер (х) обобщил теорему 
о среднем на уравнения вида Д2и = 0, где Д2 — второй дифференци­
альный оператор Бельтрами в некоторой римановой метрике.

В настоящей заметке мы обобщим теорему о среднем на самосо­
пряженные эллиптические уравнения вида*

* х — точка с декартовыми координатами xlt х2,...,х
** О его построении см. (2), а также (3), § 6 главы IV.”"

т , ,
Lu = — 2 ^AAik +B(x)u=f(x) (1)

U=l ' k '
в предположении, что В (х) один раз, a Aik (х) трижды непрерывно 
дифференцируемы в некоторой конечной области Q m-мерного евкли­
дова пространства, и затем дадим некоторое обращение теоремы 
о среднем. Используя эти результаты, мы покажем, что решения 
однородного уравнения

т
(2)

дважды непрерывно дифференцируемые внутри Q, образуют подпро­
странство в А2(П). В заключение мы докажем, что решение вариаци­
онной задачи, к которой сводится интегрирование уравнения (1) при 
тех или иных краевых условиях, удовлетворяет почти везде уравне­
нию (1), если только /(x)€Z,2 (Q).

Уравнение (2) имеет фундаментальное решение**  Г (х, у), главная 
часть которого равна

г т _т 2
2 CikW^-y^k-yk)] 2 ; (3)

Ч, Л=1 J

через Cik обозначены элементы матрицы, обратной матрице коэффи­
циентов Aik. Если расстояние г между точками х и у достаточно 
мало, то Г (х, у)>0. Мы будем считать, что это неравенство выпол­
нено.

Положим
1

Y (М j) = {Г (М J/)} т~2 • (4)
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Пусть Yo означает достаточно малую постоянную. Если и есть 
дважды непрерывно дифференцируемая функция, удовлетворяющая 
уравнению (2), то справедлива формула, выражающая для этого урав­
нения теорему о среднем значении

= $ «(У)^(Г)^-Г0 5 B(y)u(y)dVy\. (5)
I Y=Y. Y<Y. J

Здесь
m

м(г) = — 2 Aik W cos (v> л);
i, *=і s'1

v — внешняя нормаль к поверхности у = Yo- Далее, Г0 = у-т+2, и

Е (%) = (т — 2) 2 Cik W cos cos (г, I x
S, * i, k=l J

x 2 cu wcos xk)cos (r> xDdS^ (6)
i, k, 1=1

Si — гиперсфера с центром x и радиусом единица.
Формула среднего значения для уравнения (1) имеет вид

«W= —5 w N (Г)dSy ~ Го B(y)u(y)dQy — 
I Y=Y. Y<Y.
(Г Го) f (у) dQy I . (У)

Y<Y. J
Пусть E(yo) означает бесконечно дифференцируемую функцию от 

у0, имеющую нуль достаточно высокого порядка при у0 = 0 и тожде­
ственно равную нулю при у0 Уь где уг — достаточно малое число. 
Умножая (5) на Д(у0) 1^» интегрируя по у0 в пределах О<уо<^у!
и деля на коэффициент при и (х) в левой части полученного равен­
ства, мы придем к формуле вида

(х) = и (у) к (х, у) d£ly,
Y<Y,

(8)

где К(х, у) — дважды непрерывно дифференцируема по хъ х2,...,хт 
при любом положении точки у в пространстве и К(х, у) = 0 при 
у > Yl-

Теорема 1. Множество решении уравнения (2), дважды, не­
прерывно дифференцируемых внутри Q и квадратично суммируемых 
в Q, образует подпространство в Л2(^)-

Пусть {ип} — сходящаяся в А2(Й) последовательность решений 
уравнения (2), удовлетворяющих условиям теоремы. Обозначим 
и0 = Нтип. Возьмем произвольную замкнутую_ подобласть Q' и выбе­
рем у столь малым, чтобы область у(х,у)<Су лежала внутри Q каж­
дый раз, когда Если уг у, то для любой точки % б Q и для любо­
го члена последовательности {ип} верна формула (8); полагая п->оо, 
мы найдем, что эта формула верна и для и0. Отсюда следует, что 
и0 дважды непрерывно дифференцируема внутри Q. Из той же фор­
мулы (8) нетрудно усмотреть, что ип (х) ->и0 (%) равномерно в любой 
замкнутой подобласти Q.
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Будучи решениями уравнения (2), функции ил(х) удовлетворяют 
соотношению (5). Полагая л->оо, мы получим

«о W = — | 5 «оСу)^(Г)^-Го В (у) и0 (у) d£ly |. (9)
I Y=Yo Y<Yo J

С другой стороны, полагая Lu0=f0(x), имеем по формуле (7):

«о (%)= Е~(х) ( $ w° d'Sy Го В (у) п0 (у) dQy —
I Y=Y« Y<Y.

— (Г — Го)/о (у) • (10)
Y<Y. J

Из (9) и (10) следует:

(Г Го) f0 (у) dQy = 0. 
Y<Y,

Применив к последнему интегралу теорему о среднем значении 
и положив уо-^О, мы найдем, что Lu0 = 0.

Теорема 2. Формула (7) при f (у) = Lu верна для функций, 
которые имеют все обобщенные производные второго порядка, ква­
дратично суммируемые в любой внутренней подобласти Q.

Из теорем о „вложении пространств" С. Л. Соболева (4) вытекает, 
что такие функции квадратично суммируемы как по области у<уп, 
так и по поверхности у = у0, и правая часть формулы (7) имеет смысл. 
Чтобы доказать справедливость этой формулы, напишем ее для сред­
ней функции (4) ий(х); радиус усреднения h сделаем меньшим, чем 
расстояние от поверхности у = у0 до границы области Q. Перейдя 
к пределу при Л-»0, мы получим формулу (7) для функции и(х).

Теорема 3. Пусть f(x)£L2 (£2) и и (x)^”^) *•  Если и (х) удо­
влетворяет соотношению (7), то эта функция имеет в любой 
внутренней подобласти £2 квадратично суммируемые обобщенные 
вторые производные и почти везде в О. удовлетворяет уравнению (1).

* Через (£2) мы обозначаем множество функций, которые вместе со своими 
производными до порядка п включительно квадратично суммируемы в £1.

** О дифференцировании интегралов типа (12) см. (6), § 14.

Положим
f (х) = (у) Г (х, у) dLly, (11)

о
Имеем

dv С f (у) йГдХі — \Е (у) дх^У (12)

Дифференцируя далее **,  получим

d*v  [f(y) д2г ,п . f(x) С f ~ , z Л т
dxtdxk ~ J Е (у) dxt dxk + Е (х) J 2 C^Wcos(r> *9)cos(r, X

О S, ' q, 5—1 '
m 

C;z(x)cos(r, xz) cos (r, x^dS^ (13)
Z=1 

Объемный интеграл в (13) — сингулярный, т. е. должен быть пони­
маем в смысле его главного значения.
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Формулы (12) и (13) дают, вообще говоря, не обычные, а обобщен­
ные производные от v; из нашей теоремы об ограниченности опера­
тора сингулярного интегрирования * вытекает, что вторые производные 
от v квадратично суммируемы в £2.

* См. (6), а также (5), § 21.
** Подробно об этом см., например (’), § 19.

Из (13) следует, что

(14) 
о

Применив к v (х) формулу (7), мы найдем, что разность и (х) — т/(х) 
удовлетворяет соотношению (5). Повторив рассуждения теоремы 1, 
мы убедимся, что эта разность дважды непрерывно дифференцируема 
внутри £1 и удовлетворяет уравнению (2).

Рассмотрим теперь задачу об интегрировании уравнения (1) при 
некотором однородном самосопряженном краевом условии; мы при­
мем, что на множестве функций, удовлетворяющих этому условию, 
оператор Lu положительно-определенный, т. е. что в метрике про­
странства L2 (£2)

(Lu, и) С || и 1|2, С = const >0.

Как известно, поставленная нами задача может быть сведена 
к задаче о минимуме функционала

(L и, и) — (и, f) — (f, и) (15)

на замыкании упомянутого множества в метрике со скалярным про­
изведением

[и, = (Lu, v) — (и, Lv).

Решение этой задачи существует и единственно **;  оно принадле­
жит пространству L^(Q).

Теорема 4. Функция, реализующая минимум функционала (15), 
имеет в любой внутренней подобласти £2 квадратично суммируе­
мые обобщенные производные и удовлетворяет почти везде в £2 
уравнению (1).

Указанную функцию можно получить как предел минимизирующей 
последовательности, построенной по методу наименьших квадратов (7). 
При этом мы будем иметь в метрике А2(£2) (см. (7), § 60)

На основании упомянутых выше теорем о „вложении пространств", 
ип^и в среднем по любой гладкой поверхности, лежащей внутри £2.

Напишем формулу (7) для функции ип(х). При п-^оа она перейдет 
в ту же формулу (7) для и (х); теперь наша теорема непосредственно 
вытекает из теоремы 3.

Поступило
29 XII 1950
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