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МА ТЕМА ТИ ЧЕСКА Я ФИЗИКА
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ВОЛНЫ В ПЛОСКОМ РУПОРЕ

(Представлено академиком Б. А. Введенским, 611951)

В настоящей работе применяется конформное преобразование (х), 
позволяющее свести задачу о возбуждении плоского рупора к диф­
ференциальному уравнению в частных производных, которое при не­
которых упрощающих предположениях может быть решено в конеч­
ном виде. Мы ограничимся здесь формулировкой постановки 
задачи и полученных результатов.

Нетрудно видеть, что, записывая уравнения Максвелла в безраз­
мерных криволинейных ортогональных координатах <р, ф, т), связанных 
с х, у, z соотношениями

х = (<р + е’ cos ф), У = ~ (Ф + sin ф), z = (1)

где а — безразмерная величина, а а имеет смысл единицы масштаба, 
получим уравнение:

с№ц (№11 k2r№

^+-^(1+2^со8ф + ^)ц = 0. (2)

Считая, что решение уравнения (2) ищется в области
|ф — ₽|<а, (3)

а границы области представляют собой лишенные сопротивления 
металлические пластинки, получим для уравнения (2) условия: 
в случае электрических волн:

ди I ле- 1 ди „ 1 ди и ...
дф |ф=3±а“ °’ Е*~ ~ikhd^’ = (4)

в случае магнитных волн:

«|ф=₽±а = 0, Еъ=и, = = (5)

причем h = У1 4- 26’6 cos ф + е2’.
Область, в которой решается уравнение (2), определяется неравен­

ствами (3) и представляет собой плоский волновод с расстоянием ме­
жду пластинами, равным 2а, плавно сопряженный с секториальным 
рупором, имеющим угол раствора 2а, причем ось рупора составляет 
с осью волновода угол р. На рис. 1 изображены в схематическом 
виде некоторые типы рупоров, для которых задача о возбуждении 
здесь решается.
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Такие плоские металлические пластины, форма которых опреде­
ляется уравнениями ф—ф;=±а, мы будем называть в дальнейшем 
плоским рупором с углом раствора 2а, повернутым на угол р.

Предположим теперь, что |а/тт|<^;1, т. е. что рассматривается 
рупор с небольшим углом раствора 2а. Тогда, как нетрудно прове­
рить, уравнение (2) допускает разделение переменных, причем отно­
сительная точность разделения по координате <р не менее, чем a sin 3

Рис. 1

Вводя обозначения:
ka тг kci у* п п п

q = — , х = — q — — , £ = хе’’, у2 = х2 — и.„,’ я а7 а ’ ’ *

ДЛЯ ВОЛН типа Ео$п,
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и разделяя переменные в уравнении (2), получим:

«РФ 1 «/Ф . . 2х СОЗ Р Y’l ,Т1 Л л ИХ^+т^ + |1 + —5 +d10, (О
При ЭТОМ и (<р, ф) = Ф (£) у (ф).

Рассмотрим две возможные постановки задачи о возбуждении 
плоского рупора.

1. Рупор возбуждается плоской волной, приходящей из сопря­
женного с ним волновода (рупор в режиме излучения). В этом слу­
чае „условие излучения на бесконечности" при ^->оо и краевое усло­
вие при > О типа „парциальных" условий излучения (2) требуют, чтобы 
решение уравнения (7) при ^-»оо имело асимптотический характер 
Ф (£) = Се1^ / У^ + а при £-»0 — асимптотическое представле­
ние Ф (^) = Аф + ВУ™ + 0(5)- Эти два условия однозначно опреде­
ляют решение уравнения (7). Путем несложных вычислений, с по­
мощью асимптотических соотношений между <р, ф, т, и х, у, z для 
Случаев больших положительных и больших отрицательных значений 
координаты <р находим, что величина х2'т Л- представляет собой коэф- 
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фициент отражения волны, приходящей из волновода, от неодно­
родности сечения рупора.

2. Рупор возбуждается цилиндрической волной, проходящей из широ­
кого конца рупора по направлению к его узкому концу. Этот случай 
естественно назвать случаем работы рупора в режиме приема. Проводя 
вычисления, аналогичные случаю работы рупора в режиме излучения, 
получим, что теперь надо найти решение уравнения (7), которое при £-»0 
имеет асимптотическое представление Ф (£) = ф О (£), а при 
£ оо — представление

CeiZ De-*

Точно так же получим, что величина С/ D пропорциональна коэф­
фициенту отражения приходящей из широкого конца рупора цилин­
дрической волны от его узкого горла.

Теперь, когда выяснился характер краевых условий для уравне­
ния (7), определяющих его единственное решение, перейдем к на­
хождению последнего.

Уравнение (7) заменой переменных % - 2і'„ Ф (£) = (£') сво­
дится к уравнению Уиттекера (3), в котором Л =— Zxcos₽, m — iy. 
Нетрудно усмотреть, что условиям первой ^задачи о возбуждении 
рупора удовлетворяет функция

(8) 

а в случае работы рупора в режиме приема — функция

Ф2(^) = Г’/Ж-т(2г?) (9)

(здесь мы придерживаемся для специальных функций обозначений, 
принятых в книге (3)). Вывод о том, что функции (8) и (9) удовле­
творяют поставленным условиям, может быть легко сделан после 
учета асимптотических представлений для функций Mk,m(z) и Wk,m(z) 
при z-»0 и при z->oo.

После того как найдены решения уравнения (7), удовлетворяющие 
краевым условиям, легко могут быть определены поля внутри рупора 
по формулам (4) и (5). Не останавливаясь, однако, на этом, заметим, 
что легко может быть получен результат, показывающий характер 
перехода плоской волны в цилиндрическую. Именно: если попереч­
ные компоненты напряженности полей убывают пропорционально 
1 / то продольные составляющие убывают как l/^pV’ и, сле­
довательно, исчезают практически уже на расстояниях порядка не­
скольких длин волн от плоского волновода.

Как было указано выше, исследуя функцию Фі(5) при £->0, можно 
определить коэффициент отражения волны, приходящей из волновода, 
для случая работы рупора в режиме излучения. Обозначая его че­
рез R, получим

О _ r[42-Z(xCOSp + Y)] /.
Vм) Г Р/а —- / (х COS 0 — Y)j ' ' 1

Аналогичным образом получим для второго случая возбуждения 
рупора:

О = iv rp/2 + f(zC0Sp + Y)] J / ) = 0 (1 п
К rp/2 + i(xcos^-Y)l ’ W U '

Мы показали, что для небольших углов раствора рупора отра­
жается в основном волна типа падающей. Этот результат должен
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быть сравнен с выводами, полученными в результате точного под­
счета, для полубесконечного плоского волновода (4), когда отража­
ются все типы волн, которые могут распространяться в волноводе 
без затухания, причем формально этот случай соответствует рупору 
с углами а = к, ₽ = 0. Мы видим, таким образом, что по мере увели­
чения угла раствора рупора начинают отражаться все возможные 
типы волн.

Сравнивая модули коэффициентов отражения (10) и (11), прихо­
дим к выводу, что они оказываются равными, т. е. получаем резуль­
тат, которого следовало ожидать из общих соображений. Для модуля 
коэффициента отражения получается при этом формула, удобная для 
расчетов:

ch^xcosp-jT; , .
|/ ch п (х cos р + у)

Исследуя формулу (12), нетрудно установить, что прямой рупор 
(₽ — 0) обладает наилучшими условиями излучения на всех длинах 
волн, а рупор, поворачивающий назад (Р близко к к),— наихудшими. 
Из формул (10) и (11) легко может быть получено выражение также 
и для фазы коэффициента отражения.

Не останавливаясь на других результатах, которые могут быть полу­
чены из изложенного выше, сделаем краткие выводы.

1. Изложенный, метод расчета задач о возбуждении плоского ру­
пора довольно общей формы не содержит никаких произвольных 
физических допущений, которые часто очень грубо соответствуют 
действительности.

2. Несмотря на приближенный характер решения, его точность 
может быть значительно повышена путем применения метода после­
довательных приближений.

3. Применяя другие типы конформных преобразований, можно ис­
следовать задачу о возбуждении рупоров подобной формы, но с дру­
гими сопряжениями в переходной области. Тем самым можно решить 
вопрос о зависимости характеристик рупоров от характера сопряжения 
его с плоским волноводом.

4. Применяемый метод обладает большой общностью и позволяет 
исследовать много других физических вопросов. В частности, вопрос 
о возбуждении круглого и коаксиального рупоров может быть под­
вергнут исследованию в компактной форме.

В заключение автор считает своим приятным долгом выразить глу­
бокую благодарность чл.-корр. АН СССР А. Н. Тихонову, руководив­
шему выполнением этой работы.
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