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Условие, необходимое и достаточное для того, чтобы топологиче­
ское пространство было метризуемо (т. е. гомеоморфно метрическому 
пространству), было впервые дано П. С. Александровым и П. С. Уры- 
соном в 1923 г. (*).  Однако эти авторы не считали данное ими реше­
ние проблемы метризации удовлетворительным (см., например, (2), 
стр. 263, где это решение прямо называется „мало пригодным“),— 
очевидно, ввиду искусственного характера содержащегося в нем 
условия. Эта искусственность проявляется, в частности, и в том, что 
основные метризационные условия для пространств со счетной базой 
и для компактных пространств не являются частными случаями общей 
метризационной теоремы П. С. Александрова и П. С. Урысона. Много­
численные предложенные впоследствии другими авторами метризаци­
онные теоремы (см., например, (3, 4)) не представляют преимуществ 
сравнительно с теоремой Александрова и Урысона.

* Покрытие пространства R (открытыми множествами) называется локально конеч­
ным, если каждая точка пространства R имеет окрестность, пересекающуюся лишь 
с конечным числом элементов данного покрытия.

Здесь я даю новое решение общей метризационной проблемы, 
свободное от указанных недостатков и представляющееся мне окон­
чательным.

Теорема 1. Для того чтобы топологическое пространство R 
было мепгризуемым, необходимо и достаточно, чтобы оно было 
регулярно и чтобы в нем существовало счетное множество локаль­
но конечных * покрытий, объединение которых является базой 
пространства R.

Прежде чем доказывать эту теорему, покажем, что в ней в качестве 
частных случаев содержатся метризационные теоремы П. С. Урысона 
для пространств со счетной базой и для компактных пространств. 
В самом деле, если R — регулярное пространство, а у = {ГД— неко­
торая его счетная база, то взяв для каждого Гп точку хл€Гп, получим 
счетную систему конечных покрытий уп = {Гп, Объединение
всех этих покрытий уп также является базой пространства R. Стало 
быть, согласно нашей теореме, пространство R метризуемо. Итак, всякое 
регулярное пространство со счетной базой (значит, в частности, всякое 
компактное хаусдорфово пространство со счетной базой) метризуемо.

Доказательство теоремы 1. Необходимость нашего 
условия следует из того, что всякое метрическое пространство пара­
компактно (т. е. что в каждое покрытие метрического пространства 
можно вписать локально конечное покрытие(8)). Действительно, отсюда 
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сразу вытекает существование счетного множества таких локально 
конечных покрытий ул данного метрического пространства R, что 
каждый элемент покрытия ул имеет диаметр <1/я. Но тогда объеди­
нение покрытий является базой пространства R.

Для доказательства достаточности нашего условия предпо­
ложим, что в регулярном пространстве R дана счетная последователь­
ность локально конечных покрытий уп = {Гла}, п = 1, 2,..., объединение 
которых является базой у пространства R. Покажем, что тогда R 
метризуемо.

Лемма. Сумма замыканий любого числа элементов данного 
локально конечного покрытия равна замыканию суммы этих эле­
ментов.

Доказательство этой леммы не представляет затруднений.
1. Пространство R нормально. Возьмем два непересекаю- 

щихся замкнутых множества А и В пространства R. Для каждой 
точки х(:А возьмем принадлежащую базе у окрестность ГЛ(л-)а(Х) точ­
ки х такую, что [Гп (л)«(.г)] П В = А.  Для каждой точки у (г В возьмем 
окрестность Г„(У)а(у) из базы у такую, что [Гл (J,)а^)] Г]А—А. Очевидно, 
что Лс и r„WeW и йс и Гп(),)ащ. Обозначим через Gn сумму

*

* Квадратные скобки означают замыкание; А—пустое множество.

лСя у^В
(по всем х€А) тех ГЛ(Л)а(л), для которых п(х) = п, а через Нп— сум­
му (по всем у € В) тех для которых п(у) = п. В силу леммы
[G„] = U [Гла(Л)] и [Нп\ — U [Гпа(у)]. Поэтому для любого п имеем:

х^А у(.В
[G„] П в = А и [Нп] п а = А. Положим для каждого п = 1, 2,... 
ип = О„\ и [Hk], Vn = Ял\ и [G*].

k^n k^n
Тогда U= []Un и У=иИл оказываются непересекающимися п п

окрестностями множеств А и В, чем нормальность пространства R до­
казана.

2. Всякое открытое множество пространства/? имеет 
тип Ва. В самом деле, пусть G — произвольное открытое множества 
пространства R. Так как R регулярно, то для каждой точки xEG 
существует принадлежащая базе у окрестность ГЛ(Х)а(д-), замыкание 
которой лежит в G. Положим снова Gn — U Гла(л:) для каждого

x^G
п = 1, 2,... В силу леммы [G„] = U [Гла (дг)], значит, G = U [GJ, ч. и т. д.

3. Пространство R гомеоморфно некоторому мно­
жеству обобщенного гильбертова пространства Нг 
веса т, где т — мощность базы у пространства R. Как 
известно, пространством ВГ называется следующим образом опреде­
ленное метрическое пространство. Пусть 0 — некоторое множества 
индексов -Я мощности т. Точкой пространства Н~ называется всякая 
действительная функция £(&) = 5«, определенная на 0 и удовлетворяю­
щая условию: лишь для счетного числа Т значение 5(&) может быть 
отлично от нуля, причем сумма 252 (&) квадратов этих значений ко­
нечна. Расстояние ^между точками ? и т] пространства Нх дается фор­
мулой р($, т]) = — т](Я))2. Легко проверить, что расстояние

между любыми двумя точками из НТ конечно и удовлетворяет аксио­
мам метрического пространства.

Построим топологическое отображение / пространства R в Н^ (за 0 
мы берем множество всех пар в- = (па)). Так как R нормально и так 
как каждое открытое множество в R имеет тип Fa, то для каждога 
Гла можно построить непрерывную функцию рпа[х], удовлетворяющую 
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условию 0^упа(х)<^1 для всех xQR и обращающуюся в нуль во 
всех точках л€/?\ГПа и только в них. Так как уп есть локально 
конечное покрытие, то в каждой точке x^R при данном п лишь 
конечное число >-1 функций рпа отлично от нуля. Поэтому сумма 
Ер2 (х) имеет смысл для любого x^R и представляет положительную 
а
и непрерывную во всем R функцию. Тогда и функции

Чпа (х) = РпаМ

а

определены и непрерывны на всем R, причем 2^а(х)=1 и 
а

S (^па (х) — <7ла (у))2 < 2 для любых х € R, у € R. Далее применяем хорошо 
а
известную конструкцию Урысона— Тихонова.

Положив 5na (X) — - , ВИДИМ, ЧТО

п,а п а п Z

Значит, {?ла(х)}; где x£R произвольно, но фиксировано, а Я = (гга) 
пробегает все 0, есть точка пространства Нт, которую обозначим 
через /(х). Получаем отображение / пространства R на некоторое 
множество f(R) с Нт-

А. Отображение / взаимно-однозначно. В самом деле, 
если х и у — две различные точки пространства R, то существует 
некоторое Гпа, содержащее х и не содержащее у. Тогда 5«a(x)>0, 
£па (у) = 0 и, значит, f(x) ^/(у).

Б. Отображение / непрерывно. Пусть xER и еД>0 вы­
браны произвольно. Возьмем такое натуральное число N, что 1/2^ е2/4. 
Окрестность Ux точки х выберем так, чтобы она пересекалась лишь 
с конечным числом элементов каждого покрытия уя, у которого 
Отметим те пары индексов (па), для которых и 77хПГПа^=А. Чис­
ло всех отмеченных пар конечно; мы его обозначим через S. Возьмем 
столь тесную окрестность 0x^10х точки х, чтобы для любой функ­
ции 5ла, у которой индексы п, ос образуют отмеченную пару, при 
любом у^Ох было выполнено неравенство"

| Спа (Х) — ^па (у)| < . О)

Если при пара (па) не является отмеченной, то Ох не пере­
секается с ГПа, и поэтому £„а (х) = Спа (у) = 0. Отсюда и из (1) сле- 
дует неравенство

2 (Mx)-mj<<4
п < N, а

(2)

Согласно выбору числа N имеем, далее,

2 (Спа(х) — Спа(у))2 = 
п > N, а 2 w

п> N 2 а Z

так что р (/(х), f (у)) = у S (х) — С™ (у))2 < е, чем непрерывность
отображения f доказана.

п, а

199



Покажем, наконец, что взаимно-однозначное непрерывное отображе­
ние f открыто — этим будет доказано, что /—топологическое отобра­
жение. Пусть точка xER и ее окрестность Ох выбраны произвольно. 
Возьмем Гла€у так, чтобы х€Гла с Ох и положим е = £ла(х)>0. Тогда, 
если для некоторого y^R мы имеем р (f(x), f(y)) < е, то ?ла(у)>0 
и, значит, у€Гля. Другими словами, f (Гла)2О(f (х), s), чем все дока­
зано.

Замечание. Легко привести пример нерегулярного хаусдорфова 
пространства, у которого имеется счетная система конечных покрытий, 
объединение которых является базой этого пространства.

Приведем без доказательства следующее предложение, примыкаю­
щее к нашей метризационной теореме.

Теорема 2. Если нормальное пространство R имеет локально 
конечное покрытие, каждый элемент которого является метризуе- 
мым пространством, то и все пространство R метризуемо.

Следствие. Всякое паракомпактное локально метризуемое 
пространство метризуемо.

При этом пространство называется локально метризуемым, если 
каждая его точка имеет метризуемую окрестность.

Поступило
27 XII 1950
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