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МАТЕМАТИКА

М. Г. НЕЙГАУЗ и В. Б. ЛИДСКИЙ

ОБ ОГРАНИЧЕННОСТИ РЕШЕНИЙ ЛИНЕЙНЫХ СИСТЕМ 
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПЕРИОДИЧЕСКИМИ 

КОЭФФИЦИЕНТАМИ

(Представлено академиком И. Г. Петровским 15 I 1951)

Рассматривается вопрос об ограниченности решений линейной 
системы дифференциальных уравнений с периодическими коэффици­
ентами, заданных в канонической форме:

= = ~ (s = l, 2,..., А), (1)dt dyk+s’ dt dys ' ’ v ’
2*

где H = S hij(t) — hjt(t) — вещественные кусочно-непре-
i, J=1

рывные функции с общим периодом со.
В матрично-векторной форме система (1) имеет вид:

y'=rH(t)y, (Г)

где 1= ( Е 0* ) (Ek— единичная матрица порядка k), И (t)— сим­
метрическая матрица квадратичной формы Н, y(t)— 2^-мерный вектор 
с компонентами (ух (t), у2 (£),..., yk (t),у^ (0)-

Заметим, что важная для приложений система k уравнений
У + Р(0у = 0, (2)

где P(t + со) = P(t) — симметрическая матрица порядка k, y(t) — 
^-мерный вектор, является частным случаем системы (1).

В работе указывается метод отыскания достаточных критериев 
ограниченности решений систем (1) и (2), сводящий этот вопрос 
к изучению системы двух уравнений вида (1) и одного уравнения 
вида (2). В качестве приложения дается ряд критериев.

В основу настоящей работы положены результаты М. Г. Крейна (3). 
Отметим также важную работу В. А. Якубовича (4), в которой изу­
чается система двух уравнений вида (1).

В пунктах 1 и 2 мы приводим определения и известные резуль­
таты, необходимые для дальнейшего.

1. Пусть Y (t)— фундаментальная система решений системы (1) 
такая, что Y (0) = Е, где Е — единичная матрица. Ввиду того, что 
И (t) периодична, Y(t + и) — Y (£) U, где U — постоянная матрица. 
Характеристические корни р/ (i = 1, 2,..., 2^) матрицы монодромии U 
называются мультипликаторами системы (1).

Так как, по известной теореме А. М. Ляпунова (4), характеристи­
ческое уравнение det (U — рА) = 0 возвратно, все решения системы (1) 
для ограничены в том и только в том случае, если все
мультипликаторы по модулю равны единице и у матрицы монодромии 
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все элементарные делители линейны. Заметим, что при этом все решения 
системы (1) ограничены также для — оо<£-<0.

2. В этом пункте мы изложим результаты М. Г. Крейна (3) в той 
форме, в которой они будут использованы ниже. Запишем систему (1) 
в виде:

У = IH0{t)y + UH(t)y. (?)
Пусть при X = О все решения системы (3) ограничены и пусть 

Н (t)— матрица с положительным средним по периоду со, т. е-
СО 

о 
при любом непрерывно зависящем от t векторе у(()фО.

Если теперь в системе (3) непрерывно увеличивать параметр X 
от 0, то k мультипликаторов системы (3) начинают монотонно вращаться 
по единичной окружности комплексной плоскости против часовой 
стрелки (zp-1 (X) р) <0—мультипликаторы первого рода) и k мультиплика­
торов — по часовой стрелке (zp-1 (X) р^ > 0 — мультипликаторы второго 
рода), причем принадлежность мультипликатора к определенному роду 

не зависит от выбора Н (t). Появление при этом у 
матрицы монодромии системы (3) при X = Хх

Bi V элементарного делителя степени выше первой
----- I j------- или мультипликатора с модулем, отличным от 

К-----)--------- единицы, возможно лишь в том случае, если
Х" при некотором Х = Х0 (O^Xo^Xj на единич­

ной окружности имела место встреча мультипли- 
ис' каторов разного рода. Таким образом, до встречи

с мультипликатором другого рода каждый 
мультипликатор монотонно вращается, не меняя своего рода.

Если Н(t)— матрица с неотрицательным средним и при Х = 0 
у системы (3) нет равных мультипликаторов разного рода, то описанные 
выше факты имеют место с тем лишь отличием, что для мультипли­
каторов первого рода zp-1 (X) р' < 0, а для второго рода zp-1 (X) р^ > 0, 
т. е. с увеличением X мультипликатор может оставаться на месте.

3. Пусть в системе (3) Но (Z) = h0 (t) Е, где Ао W — функция с перио­
дом со. Пусть Ps(X) (s = 1, 2,..., k)— мультипликаторы первого рода 
системы (3). При X = 0 все они находятся на единичной окружности 
в некоторой точке А, пусть Im р5 (0)^0 (см. рис. 1). Рассмотрим на 
той же полуокружности точку В, лежащую в направлении обхода 
против часовой стрелки от А.

Условимся говорить, что периодическая матрица // (I) с неотрицатель­
ным средним по периоду со переводит мультипликатор в точку В 
если для всех 0^ Х<^ 1 все мультипликаторы первого рода системы (3) 
располагаются на дуге АВ, а при X = 1 хотя бы один из них нахо­
дится в точке В.

Теорема 1. Пусть hx (Z) >• 0 и пусть матрица (t) Е переводит 
мультипликатор в точку В. Тогда, какова бы ни была матрица 
Н (t) с неотрицательным средним по периоду и такая, что || Н (Z) || 

hi (t) *,  все мультипликаторы первого рода системы

* За норму симметрической матрицы || Н (Z) || при фиксированном Z мы принимаем 
max | Х< (/) |, где Х< (0< i = 1, 2,2k,— собственные значения матрицы Н (/) при 
данном t.

^у' = h0(t)Iy +/И (t) у (4)
находятся на дуге АВ.
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Наметим доказательство теоремы. Пусть (0, ^), (£1( t2),.(tr^, w) — 
фиксированное разбиение интервала (0, w). Предположим сперва, что 
все коэффициенты системы (4) принимают на каждом из интервалов 
(Л-ъ ti) постоянные значения. Матрицы с такими элементами мы будем 
для краткости называть ступенчатыми.

Пусть Г — множество ступенчатых матриц, переводящих муль­
типликатор в точку В, не превосходящих по норме Множество 
Г компактно в смысле равномерной сходимости, так как разбие­
ние на интервалы (ti-ъ tt) фиксировано. Поэтому можно найти 
матрицу с нормой hmln (О К (t) такую, что любая ступен­
чатая Н (I) с неотрицательным средним и нормой А(0-САпцп(0 
(A (t) Ф Amin (0) уже не принадлежит Г, т. е. не переводит мультипли­
катор в В.

Используя этот факт и свойство мультипликаторов первого рода 
(см. п. 2), можно показать, что если Н (t) ступенчатая с неотрицательным 
средним и || Н (t) || Аты (0> то все мультипликаторы первого рода 
системы (4) находятся на дуге АВ.

Докажем теперь, что hm\n (0 = hr (t). Рассмотрим матрицу = 
= //min(0 + E — Япип(О)- ^(^6 Г при всех 0 < р. < 1. Это
очевидно при р. = 0. Так как матрица Amin (0 Е— //min(0 имеет неотри­
цательное среднее, мультипликатор первого рода с увеличением р. 
может сдвинуться из точки В лишь против часовой стрелки. Это 
противоречит, однако, предшествующему замечанию, ибо || (^)|| =
= Amin (t). Так как (t) — Amin (t) E, то Атіп(^)Д€Г. Сравнивая аргу­
менты мультипликаторов первого рода системы (4) при |Я (0 = Aj Д) Е 
и Н (t) = Amin (0 Е, получаем Ах (0 = Amin (0, ибо, по предположению, 
Ai (0 Апип

Любую кусочно-непрерывную функцию можно приблизить с любой 
степенью точности ступенчатой. Отсюда, ввиду непрерывной зависи­
мости мультипликаторов от коэффициентов системы, следует, что 
теорема верна в общем случае.

Определение. Систему (1) назовем сильно устойчивой, 
если существует такое е>0, что, какова бы ни была симметрическая 
с периодом ы матрица Q, элементы которой кусочно-непрерывны 
и || Q (t) || < е, все решения системы у' = ЦН + Q) у ограничены.

Исследуя вариацию матрицы монодромии, можно показать, что 
система (1), все решения которой ограничены, сильно устойчива тогда 
и только тогда, когда у системы отсутствуют равные мультипликаторы 
разного рода.

Аналогично теореме 1 доказывается теорема 2.
Теорема 2. Система у' = у + Ш(t)у, где Н(t) с неотри­

цательным средним, сильно устойчива, если сильно устойчива 
система у'=/Но (t)y + q (t) Еу для любой периодической функции 
q (t), такой, что ||Н(0 ||.

Для системы (2) справедливы полные аналоги теорем 1 и 2. 
Сформулируем одну из них.

Теорема 2'. Система у" + Ро (t) у + P(t)y = 0, где Р (t) с неотри­
цательным средним, сильно устойчива, если сильно устойчива 
система у" + Ро (t) у + г (t) Еу = 0 для любой периодической функции 
г (t) такой, что 0 <1 г (t) || Р (£) ||.

Приведем несколько достаточных критериев сильной устойчивости 
систем (1) и (2).

Критерий 1. Пусть Xmin(t) иХтах(0— наименьшее и наибольшее 
собственные значения Н (t) в каждой точке. Система (1) сильно 
устойчива, если
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CO co

5 *mln Ю \ Xmax (t) dt<(n + 1)тг,
0 0

где n^O —целое число.

Для случая k = 1 этот критерий был ранее установлен В. А. Яку­
бовичем.

Используя критерий, полученный для одного уравнения (2) 
вариационным методом, и теорему 2', можно доказать следующий 
критерий.

Критерий 2. Обозначим pmin(t) и ртах(£) — наименьшее и наи­
большее собственные значения P(t) в каждой точке. Пусть

Я2 ф Рт\п (t) Ртах (t) Ь2, (5)
где а, Ь — константы и п2™2 / со2 а2 <(п + l)2Tt2/w2.

Система (2) сильно устойчива, если
СО

5 (Ртах (t) — a2) dt < 2 (п + 1) (Ь2 - a2) Vo, 
о

где v0 — наименьший положительный корень уравнения

а ctg [а бпЛі) -v)] =
Придавая константам а, b различные значения, можно вывести 

обобщения на системы (2) критериев Н. Е. Жуковского и А. М. Ля­
пунова.

Критерий 2'. Пусть а2 = п2п2 /со2, Ь2 = (п + 1)2л2 /со2. Система (2) 
сильно устойчива, какова бы ни была матрица P(t), удовлетворяющая 
условию (5).

Этот критерий для одного уравнения (2) был впервые получен 
Н. Е. Жуковским (2).

Критерий 2". Пусть &2 = +оо и P(t) удовлетворяет условию (5). 
Система (2) сильно устойчива, если

СО

(Ртах (0 — Л2) dt < 2а (п 4- 1) ctg -2 , “ ■ ; .

При а = 0 получаем обобщение критерия А. М. Ляпунова, уста­
новленное для системы (2) М. Г. Крейном (3), а именно:

Система (2) сильно устойчива, если
СО

\ Ртах (t) dt < — .
О

Критерий 3. Рассмотрим систему у" + Ро (t)y + P(t)y = 0, где 
PQ (t) — диагональная матрица такая, что ее элементы р° (t) расположены 
в областях устойчивости одного уравнения (2) одной четности, 
а Р (t) — матрица с неотрицательным средним и || Р (t) || = р (t). Если 
Ри (О + Р W принадлежит той же области устойчивости, что и 
р° (t), i = 1, 2,..., k, то система сильно устойчива.

Авторы пользуются случаем принести глубокую благодарность 
своему научному руководителю проф. И. М. Гельфанду за руковод­
ство и помощь, оказанную в работе.
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