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МАТЕМАТИКА

Академик М. В. КЕЛДЫШ

О НЕКОТОРЫХ СЛУЧАЯХ ВЫРОЖДЕНИЯ УРАВНЕНИЙ 
ЭЛЛИПТИЧЕСКОГО ТИПА НА ГРАНИЦЕ ОБЛАСТИ

В ряде работ рассматривались уравнения эллиптического типа вида
д-и , _ <У-и . ди . , ди , _ - „ .
ду2 + дх* + а-ду дх + си = О’ с °'

в области, расположенной в полуплоскости граница которой
содержит отрезок оси х. При общих ограничениях на гладкость границы 
области устанавливается существование решения задачи Дирихле для 
уравнения (1).

Рассмотрим уравнение
, , х m дги . д^и . ди , , ди , „L (и) = ут + а + b 5--- р си = 0, с < 0 (2)' ' ду- дх2 ду дх ' '

в области Д, ограниченной отрезком (0,1) оси х и гладкой кривой Г, 
опирающейся на отрезок (0, 1) и расположенной в полуплоскости 
у>0. Мы предположим, что а, Ь, с являются аналитическими функ­
циями х, у.

Задачей D мы будем называть задачу Дирихле для уравнения (2) 
при непрерывных данных на границе. Задачей Е назовем задачу 
определения ограниченного в области Д решения уравнения (2) при 
непрерывных данных на Г.

Теорема. Если т<^\, то всегда существует решение задачи 
D, а задача Е неопределенна.

Если т = 1 и а (х, 0) < 1, то всегда существует решение задачи 
D, а задача Е неопределенна; если же т = 1 и а (х, 0) 1, то за­
дача D, вообще говоря, не имеет решения, а задача Е всегда имеет 
единственное решение.

Если и а (х, 0) 0, то всегда существует решение
задачи D, а задача Е неопределенна; если же 1 < тп < 2 м а (х, 0) > 0, 
то задача D, вообще говоря, не имеет решения, а задача Е всегда 
имеет единственное решение.

Если т^Ч и а (х, 0) < 0, то задача D всегда имеет решение, а 
задача Е неопределенна; если же т 2 и а (х, 0) > 0, то задача D 
не всегда имеет решение, а задача Е всегда имеет единственное 
решение.

Для доказательства заметим, что функция v, удовлетворяющая 
неравенству L (ц) < 0, не может иметь внутри Д отрицательного мини­
мума.

Установим теперь две леммы.
Лемма 1. Если существует функция W, положительная в 

Д + Г, стремящаяся равномерно к бесконечности при приближении 
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к отрезку 0 < х < 1 и удовлетворяющая неравенству L(W)<0 в А, 
то решение задачи Е единственно.

В самом деле, пусть и — решение (2), равное нулю на Г. В силу 
£(elF— zt)<0 функция zW — и не может иметь в А отрицательного 
минимума, и так как ее предельные значения на границе положительны, 
всюду в А имеем sUZ—ц^-0. Отсюда и^О и, так как аналогично 
получим имеем и = 0.

Лемма 2. При любых данных на Г существует решение задачи 
Е. Если для каждой точки х0 отрезка 0 <С х 1 можно построить 
функцию ю, непрерывную в некоторой окрестности (у 0, 
(х — л0)2+ у2 -С р2), равную нулю в х0, положительную в остальных 
точках аг, а удовлетворяющую во внутренних точках вХа неравен­
ству то при любых данных на границе существует реше­
ние задачи D.

Функцию ю мы будем называть барьером в точке хй. Пусть 
f — произвольная непрерывная функция в А. Обозначим через Ач 
часть А, расположенную в полуплоскости у^у- Пусть и^ — ре­
шение задачи Дирихле для уравнения (2) в А», принимающее зна­
чения f на границе Решение иъ в Дч существует, так как уравне­
ние (2) не вырождается в Дч. В силу имеем в неравенство 
| и^ | <1 max |/|, поэтому семейство функций {«„} компактно внутри А. 
Пусть и — предел равномерно сходящейся подпоследовательности 
семейства {и-п}. Очевидно, L (и) = 0 и, так как все точки Г регулярны, 
функция и принимает значения f на Г. Таким образом, решение задачи 
Е всегда существует. Если в каждой точке 0<л<1, у = 0 суще­
ствует барьер ю, то обычными рассуждениями доказывается, что и 
принимает значения f на у = 0, следовательно, существует
решение задачи D.

Чтобы завершить доказательство теоремы, достаточно построить 
барьеры в точках отрезка у = 0, для всех случаев, когда
утверждается существование решения задачи D, и функцию U7 для 
всех случаев, когда утверждается единственность решения задачи Е.

Во всех случаях выражение для барьера мы будем брать в виде

ю = у" + (х — л0)2, 0<₽<1;
тогда

£ (^) = ₽ (₽ - 1)у”+м + ару-1 + 2 + 2b (л - х0) + сю.

Если т<^\, то при достаточно малых у, |л — х01

£ (^) < ± р (Р —1)^+3-2<0.

При т = 1, а (%, 0)< 1 выберем р так, чтобы ₽< 1 — а (х0, 0), тогда 

£(г>)<4 3(3-1 +а(л0, 0))j/₽-1<0

при достаточно малых | л — л01 и у.
В случае 1 <т < 2 и а(х, 0)<0 выбираем Р<2— т,

£ (^Х 3 (3 - 1)ут-2+0 + 2 + 26 (% - х0) + сю < ₽ (₽ - 1)у^-2+з < о
вблизи (х0, 0).

Наконец, при т^А а(х, 0)<0 и малых у, |х — л0|

£ (ц) < Рау»-1 + 2 + 2Ь (х - хф + сю < А а (х0, О)^1 < 0.
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Перейдем к установлению единственности проблемы Е. Покажем, 
что во всех требуемых случаях можно выбрать функцию, удовлетво­
ряющую условиям леммы 1, в виде

i W — — logy/ — {х — а)" + С,

где а выбрано так, чтобы расстояние от области А до прямой х = а 
было больше единицы.

Пусть, например, т = 1, а (х, 0)^-1,

L(W) = -п(п—1)(х —а)^2 —п&(х —+

В области А при достаточно большом А имеем, в силу аналитич­
ности а (х, у/),

1 — a < Ay.

Показатель п можно выбрать столь большим, чтобы

п — 1>3|Ь(х — а)|, п(п—1)>ЗЛ;

после этого подберем С столь большим, чтобы в А. С другой 
стороны, будем иметь

^(^)<~4-cU7<0. О

Аналогичным образом разбираются случаи 1 <т< 2, а(х, 0)>0 
и m >2, а (х, 0) 0.
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