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§ 1. В настоящей работе мы используем обозначения статьи (2). 
Теорему § 4 работы (2) в дальнейшем будем называть основной тео­
ремой теории номографирования систем уравнений, или, короче,— 
основной теоремой теории систем.

Величины т, ф!, ф1( <р2, ф2, и, V, Д2 определены в (2). Пусть
с . _ “х* - иу "УXX + 2 (^ Чху -

Ч^у - uyvx

,D _ их vyy - "Ух иуу + 2 (UyOxy - "Уу «ху)
L 4xvy-uyvx

= (фі — ф2) — фі (<Рі — ф2), V = ф2 (Ф1 — Фг) — Фг (91 — 9г),

^з = ?з (2-1» 2^), ^з = Чз (^і> ^г).

Т=Т(у) = Ті = Т^='іх G = l, 2),

где через С и D мы обозначили проективно-дифференциальные инва­
рианты, введенные Гурса — Пенлеве.

В основе работы (2) лежат следующие леммы, которые мы при­
водим только потому, что в упомянутой работе они за недостатком 
места явно не формулированы.

Лемма 1 (2). Номограмма системы уравнений
Л (%; j;zi) = o, Л (х; у, г2) = о (1,1)

с одноименными бинарными полями (Zi, z2) определяется с шестью 
произвольными функциями следующими уравнениями:

Xi = 9i, J'i = Фи ■ х2 = ?2, У2 = Фз,

Л(1) = ?з, у = + "V, ^(2) = ^з, У& = ’із» + ‘У-

Лемма 2 (2). Номограмма системы уравнений (1,1) с двумя 
инвариантными бинарными полями (zp, 22) определяется уравне­
ниями:

^1 = 91 = -^, +
у Л

о-3»

V — vz
^(1) = -^. 7(1) = -»-^ + ^ +

“2, г.
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с четырьмя произвольными функциями *.

* Эта номограмма принадлежит к типу тангенциальных (2).
** Из (1,6) и (1,5) получаем + Д2 — т2Д2 = 0, 1\ + Дх — т2Д2 = 0, где Д2 и Д2 — 

параметры автора.

Лемма 3 (2). Для того чтобы система (1,1) была номографи­
руемой, иначе говоря, для того чтобы два одноименных бинарных 
поля леммы 2 (zy z2) можно было бы заменить, соответственно, 
шкалами zr и z2, необходимо и достаточно, чтобы удовлетворялись, 
соответственно, уравнения:

Й)-,=0' о-4’
причем оба условия выражают взаимно-независимые свойства.

Из леммы 3 легко получаем, что справедлива лемма 4.
Лемма 4. Для того чтобы система (1,1) была номографируемой, 

необходимо и достаточно, чтобы щ и ф; (I = 1, 2) удовлетворяли 
уравнениям:

к+0" + <"4) =0’ +
причем первое уравнение дает условие вырождаемости первого 
инвариантного поля в шкалу zb а второе — второго поля в шкалу z2.

Из двух уравнений (1,5) находим:
Г1п-^ = — Т-^Л= — д = Ді **•  (Ь6)

Лемма 5. Выражения и QnA?) являются проектив­

но-дифференциальными инвариантами Гурса — Пенлеве с точностью 
до знака.

В самом деле, вычисляя, легко найдем

следовательно, имеем:
С = —Дь D = ^., (1,8)

Лемма 6 (2). Имеют место следующие равенства:

— 3 (In и)ху = — 3 (<Р1 Ф1 — 91 фі) А" = 2Д2д:-- Д1у,
(1,9)

— 3 (In v)xy =—3 (<р2 Фг — ?2 фг) = Д2х — 2Д1 у,
V

dx^— d^y^—^2Х(і)^(і) /С [Ді;, + Дг^ + 3 (In-rJ.^], (1 10)
dx^d^y^) — d2X(2)dy(2) = L [Діу + Д2л + 3 (In t2)^],

где Ku L — не обращающиеся в нуль множители.
§ 2. Из упомянутой основной теоремы теории систем уравнений 

непосредственно вытекает следующая теорема.
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ПОПРАВКА

На странице 178 1-ю строку формулы (1,10) следует читать 
^(і) ^27(і) - ^2Х(і) dya) = /< [д^ + + з (In ],



Теорема 1. Пусть левая часть уравнения
f(x;y-,z) = 0 (2,1)

подчинена следующим ограничениям: 1) эта функция имеет в неко­
торой трехмерной области G непрерывные частные производные 
до четвертого порядка включительно по всем аргументам; 2) ча­
стные производные функции f (х; у; z) не обращаются в нуль в об­
ласти G, т. е. 3) уравнения системы f (%;у, Zy) =0,
/ (х; у; z2) = 0 могут быть однозначно разрешены относительно zr 
и z2 в окрестности каждой точки некоторого двумерного множе­
ства Gr, принадлежащего G; 4) якобиан 

или, что то же,
т2 — Т1 0 (2,2)

на соответствующем множестве точек Gy плоскости хОу.
Следовательно, уравнение (2,1) определяет многозначную функ­

цию z от переменных х и у в ОІ, причем (что очень существенно) 
между двумя функциями Zy = Zy (х; у) и z2 = z2 (х; у) не может быть 
установлено соотношение вида <р (Zy, z2) = 0 ни в какой области, 
принадлежащей G\.

Тогда необходимым и достаточным условием номографируемости 
уравнения (2,1) с одним выравниванием на множестве G\ с заведомо 
непрямо линейной шкалой z (случай распадения шкалы z на прямые, 
среди которых хотя бы две не сливаются, не исключается) яв­
ляется выполнение уравнений (4,1)*  основной теоремы теории 
номографирования систем уравнений работы (2), § 4. Номограмма 
единственна с точностью коллинеации.

* В первом из этих уравнений имеется опечатка. Уравнения (4,1) следует писать 
так:

- Ді = [In - 2Д]у)]л, Д2 = [In (2Д2л - Д1у)].

** При этом шкалы zlt либо гг, либо Zy и z2, носители которых, в силу условия 4) 
теоремы 1, не совпадают, будут прямолинейными, если, соответственно: Д] + Д2х + 
+13;(1пт1)ху = 0, либо Д^ + Д^ + Зрпт^^О, либо оба эти равенства одно- 
временно выполняются.

Ограничения 1) —3) формулированной теоремы могут быть ослаб­
лены или изменены очевидным образом.

Применение этой теоремы делает целесообразным ее обобщение 
путем введения понятия номограмм с, вообще говоря, мнимыми шка­
лами и продолжения функций Zy и z2 до естественной границы G*.

§ 3. Условия 1) —4) формулированной теоремы мы назовем г-усло- 
виями, поскольку переменная z находится в привилегированном 
положении. Если z-условия не удовлетворены, то следует применить 
эту теорему для х-условий либо у-условий.

Если в z-условиях, х-условиях и у-условиях ограничения 1)—'3) удов­
летворены, а ограничение 4) — нет, то уравнение (2,1) либо неномо- 
графируемо, либо номографируемо с тремя прямолинейными шкалами 
z, х и у и, следовательно, применимы условия Сен-Робера.

§4 . Теорема 2. В предположении выполнения z-условий номо­
грамма уравнения (2,1) будет иметь шкалы х, либо у, либо х и у 
прямолинейными, а шкалу z — криволинейной или распадающейся ,  
если, соответственно, удовлетворяются следующие равенства:

**

2Д2л — Д1у = 0; Д^-2Діу = 0; Дц, = 0, Д2х = 0.
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Теорема 3. В предположении, что z-условия выполняются, 
будем иметь коническую номограмму со шкалами х и у, находя­
щимися на одном коническом сечении, и с криволинейной или рас­
падающейся шкалой z, если выполнены условия Діу — — =/= О,
^ху =— ДхДіу, либо (что равносильно) условия = — Д.^ =/= О, 
^ху = Дг Дгх"

Мы не можем здесь останавливаться на преобразовании условий, 
данных теоремами этого параграфа, к другим их известным формам, 
не зависящим от ограничения 4) теоремы 1; равным образом мы не 
останавливаемся отдельно на случае номограммы второго жанра (не 
обязательно конической) и на номографических свойствах пар сопря­
женных гармонических функций.

§ 5. В силу леммы 5 проективно-дифференциальные инварианты 
Гурса — Пенлеве для канонического представления уравнения (2,1), 
как уже установлено выше (1,8), с точностью до знака равны пара­
метрам автора (3) Дх и Д2, а именно, С = — Дъ D = Д2. Поэтому ра­
венства (1,8) позволяют найти каноническое представление для урав­
нения (2,1), что приводит к интегрируемой в условиях удовлетворения 
теоремы 1 системе дифференциальных уравнений Аппеля, как это 
показал Гронваль(4). Это же можно выполнить по методу автора, 
заключающемуся в интегрировании (интегрируемой в силу условий 
теоремы 1) системы уравнений (5,1)

р) =о, ро =0, Г1п(^р^1 =Д1, [in^-g^ 
\их)х К Чу)у L р L из Jy 3

(5,1)
§ 6. Легко, пользуясь изложенным методом, решить вопрос о наи­

большем числе кривых, одновременно спрямляемых в декартовом 
абаке или в абаке Массо (4). Получаем теорему, гласящую, что в де­
картовом абаке всегда спрямляемы две кривые ,  и подобные теоремы.*

*_См^систему двух уравнений (1,5) с двумя неизвестными функциями (In v2 / й)х 
и (In и2 v)y для рассматриваемого случая.

** Линии х = const, у = const и zx = const образуют прямолинейную сетку. 
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Очевидно, что все формулированные в §§ 2—4 теоремы и леммы 
имеют приложение к теории сеток (Gewebe), рассмотренных матема­
тиками школы Блашке (5), и дают аналитические критерии существо­
вания топологических соответствующее число раз дифференцируемых 
отображений одной плоскости на другую, спрямляющих три семейства 
кривых (вообще говоря). В самом деле, изложенное выше, как легко 
видеть, есть теория топологического соответствия плоскостей хОу 
и uOv. При этом соответствии семейства параллелей х = const и 
у = const и семейство кривых zY = const и z2 = const преобразуются 
в семейства прямых = <fxu + v, ф2 = <?2и + v, у(]) = хщ и + V, 
у (2) = Х(2)И + “У**.

Поступило 
22 XI 1950
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