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(Представлено академиком В. И. Смирновым 8 1 1950)

1. Пусть заданы треугольная матрица чисел

х^х^
...... (1)
х^хР ...х^

— (п=1, 2, ...)
и функция f(x), определенная в интервале [— 1, 1].

Обозначим через Ln (f, х) интерполяционный полином Лагранжа, 
построенный для функции f(x) и для матрицы (1). Согласно класси­
ческому результату С. Н. Бернштейна — Г. Фабера, не существует 
матрицы (1), при которой для любой непрерывной функции выпол­
няется равномерно в интервале [—1, 1] соотношение

Ln(f, x)->f(x), n->oo. (2)
Тем не менее, С. Н. Бернштейну (J) удалось в случае чебышев- 

СКОИ матрицы узлов ( = COS - ТС, k = \,2,...,n\ построить
равномерно сходящийся для любой непрерывной функции интерполя­
ционный процесс {An(f, x)}^=i, у которого отношение Хя степени по­
линома An(f, х) к числу его узлов сколь угодно близко к 1. Однако 
в интерполяционном процессе С. Н. Бернштейна \п не стремится к 1 
при п -> оо. В настоящей заметке мы хотим доказать, что результат 
С. Н. Бернштейна является в некотором смысле точным.

2. Введем оператор

An (f, х) = L „ (f,x) + 2 № (Г) W, (3)

где {А;п)(/)}“=i (n = 1, 2, ..., а) — произвольные линейные функцио­
налы, нормы которых ограничены в совокупности, и {р^ (х)}^— 
произвольные полиномы степени +

Теорема 1. Если существует интегрируемая (L) функция 
g(x)^-0 в[—1, 1], удовлетворяющая условиям

1
p[n> (х) cos j arc cos x g (x) dx = О

—i
j = 0, 1, 2, ..., (n — m), i = 1, 2, ..., a, n — 1, 2, ..., 
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тогда при т — о(п) и с — о(п) невозможно выбрать функционалы 
{Л^п)(/)}^=1, п — 1,2,..., таким образом, чтобы оператор (3) схо­
дился равномерно для любой непрерывной в [— 1, 1] функции f(x).

При доказательстве теоремы мы пользуемся методом Л. Фейера (2) 
с усовершенствованиями В. Ф. Николаева (3).

Положим, что

ф(0)
1 cos #9
N 2d п + s + 1 — k ’

Л=$4-1

X(в) = ф(0) + Ф (0)-

При этом считаем, что m<is->oo и п / s со. Кроме того, N мы 
выбираем так, что |х(0)|<Д-

Введем тригонометрический косинус-полином

ф (0, а) = = р (0, а) + Q (0, й)(

ГДе пт \ 1 v/ cos cos
а) — 2d n + s + 1-k ’ 

k=s+l

/п \  1 cos (2п -f- 2s4-2 — k) a cos (2п 4- 2s 4- 2 — k) О
1 ’ а/ ~2d n + s + 1- А '

л=^4-1

Пусть g! (9) = g (cos 9) sin 9. При s>0 существует такой тригоно-
ТС

метрический полином ^(9), что gr (9) = t (9) 4- р (9), где | р (9) | rf9< е.
о

Допустим, что оператор (3) равномерно сходится для любой не­
прерывной функции. В таком случае нормы оператора ||ЛЯ|| должны 
быть ограничены ЦЛпЦ-^Л (п = 1, 2,...). Легко видеть, что при до­
статочно большом s

Лп [Q (9, а). 9]0=а t (а) da = О, 
о

Ап [Q (9, а), 9]0=а р (а) da 
о

< еЛ 1п^.

Поэтому
^Л„[(?(9,а), 9]0=agl(a)^ <еЛ1п^-. (4)

о
Замечаем далее, что £П[Р(9, а), 9]=Р(9, а). Поэтому

Ln [Р (9, а), (а) б/а> -у- In ~ ср (2а) gx (а) da, (5)
о о

где В < gi(a) da. Рассуждая для интеграла из правой части (5) 
о

таким же образом, как при выводе (4), мы получим

J 9(2a)gi («) <4HnlF- 
о
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Пусть Діп) (cos АО) = й)/*.  Тогда из ограниченности норм функцио­
налов А^ (f) следует, что | | <^сь где сг не зависит от i, k, п.

* В теореме 2 можно без ограничения общности считать, что нормы функционалов 
ограничены в совокупности.

Следовательно,

а , п 
---- ІП-9Г, п 2s ’

Из (4), (5), (6), (7) следует неравенство

РМ (cos к). (7)

Ап [Ф (6, а), 0]9=а ^(а) tZa 
о

< п

что противоречит ограниченности оператора An(f, п).
Рассмотрим следующий частный случай оператора (3):

An (f, х) = Ln (f, х) + 2 [Yn) (Л - f(^)] (x), (8)
i=i

где kb k2, ...,ka — любое подмножество из {A}*=i;  {І^ СУТЬ 
фундаментальные полиномы Лагранжа матрицы (1) и fY'1 (/)} — произ­
вольные линейные функционалы. С. Н. Бернштейн (х) доказал, что 
можно функционалы {YYf)} выбрать таким образом, чтобы для опе­
ратора (8) в случае матрицы Чебышева выполнялось равномерно для 
любой непрерывной функции в [— 1, 1] соотношение

Ап (f, х) -> /(х), ©о. (9)
В моей заметке (4) доказывается, что интерполяционный процесс 

С. Н. Бернштейна сходится равномерно для любой непрерывной функ­
ции при некотором классе матриц узлов.

Однако в этом интерполяционном процессе отношение степени 
полинома An(f х) к числу его узлов не стремится к 1 при п-»ос. 
Точнее, а—О(п), но СТ =Е ° (п)-

Теорема 2 показывает, что результат С. Н. Бернштейна является 
в некотором смысле точным.

Теорема 2. Если матрица (1) удовлетворяет условиям
1

? (х) cos j arc cos xg(x)dx = О Y j = 0, 1, 2,..., n, n—1, 2,...,
” (10)

где g(x)^0 — некоторая (Еуинтегрируемая функция, то при 
с = о(п) нельзя выбрать функционалы. {А^ (/)}’=! таким образом, 
чтобы оператор (8) удовлетворял соотношению (9) равномерно для. 
любой непрерывной функции в [—1, 1].

Эта теорема является следствием*  теоремы 1.
Из теоремы 2 легко получить следующую теорему:
Теорема 3. Если числа Кристоффеля ортогональной системы 

полиномов = О , v = 1, 2, ..., п, п = 1, 2,..., то при а = о(п) 
нельзя выбрать функционалы At(п) (/) таким образом, чтобы для 
оператора (8) выполнялось соотношение (9) равномерно для любой 
непрерывной функции в [— 1, 1] при условии, что матрица (1) со­
стоит из корней этой ортогональной системы полиномов.

Доказательство. Пусть {w„(х)} — ортогональная система поли­
номов веса g(x).
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Так как lvn (х) cos j arc cos x при / = 0, 1,2, ..., n есть полином 
степени <^2n — 1, то по формуле механических квадратур с узлами 
в корнях полинома ыя(х) мы имеем:

1

/in) (х) cos j arc cos x g (%) dx =
—i

n
= (Xi) cos j arc cos xr КУ = cos j arc cos xv • 

i=l
следовательно, выполняются условия теоремы 2.

Теорема 4. Если вес g (х) 0 ортогональной, системы полино­
мов удовлетворяет условию g{x)VT^^^M при х€ [—1, 1], то 
при а = о (п) нельзя выбрать функционалы {Лгл)(/)} таким образом, 
чтобы для любой непрерывной функции оператор (8) удовлетворял 
бы равномерно соотношению (9) при условии, что матрица (1) 
состоит из корней этой ортогональной системы полиномов.

Эта теорема является следствием теоремы 3, ибо, согласно резуль­
тату Эрдеша и Турана (5), при выполнении условия g (х) У Г—х^М, 
х€ [— 1, 1], числа Кристоффеля соответствующей матрицы равны

3. Пусть функция <о (t) удовлетворяет следующим условиям: 
1) w(t) непрерывна при 0<£<оо; 2) 0<со(Л)<со(/») приО<Л<^2; 
3) « + t2) < со (^) + со О 4) со (0) = 0.

Обозначим через Си множество тех непрерывных функций f(x), 
[— 1, 1], для которых \f(x + h) — f(x) |</<со (А) при — 1 <%<.*  + 

+ Л^ + 1, где К— константа, зависящая от f.

* Заметим, что это отношение зависит лишь от <л(х).

Определим теперь некоторый класс матриц узлов интерполиро­
вания.

Матрица (1) называется регулярной, если: 1) существует конеч­
ное положительное число С такое, что для всех х € [— 1, 1] 
S [/^(xJP^C (n = 1, 2, ...); 2) для любого х€[—1, 1] при х* п)< 

^=1
^(х^^И (п=1,2, ...) и при х^Хй^х^і 

|/ln)W|>|4+iWI(«=l> 2, ...).
Теперь мы можем сформулировать следующие теоремы (6).
Теорема 5. Если матрица (1) регулярная, то можно по­

строить оператор вида (8) с отношением * степени полинома 
Ап (f, х) к числу узлов, стремящимся к 1 при п-+ со, так, что для 
любой f € Сы имеет место равномерно соотношение (9).

Из моей заметки и теоремы 5 следует теорема 6.
Теорема 6. Если матрица (1) якобиева с параметрами —1

« < 0, — 1 3 0, то можно построить оператор вида (8) с от­
ношением степени полинома Ап (f, х) к числу узлов, стремящимся 
к 1 при п-> со, так, что для f € Са имеет место равномерно соот­
ношение (9).

Поступило
9 XI 1950
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