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ТЕОРИЯ УПРУГОСТИ

Н. Д. ТАРАБАСОВ

НАПРЯЖЕННОЕ СОСТОЯНИЕ ЭЛЛИПТИЧЕСКОЙ ПЛАСТИНЫ 
С НЕСКОЛЬКИМИ ЗАПРЕССОВАННЫМИ В НЕЕ КРУГЛЫМИ ДИСКАМИ

(Представлено академиком^!. С. Лейбензоном 23 XII1950)

Рассмотрим эллиптическую тонкую пластину, заполняющую много­
связную область So, расположенную в плоскости z = х + iy и ограни­
ченную извне эллипсом у0 с полуосями а и b с центром в начале 
координат, а изнутри — окружностями уп радиусов гп с центрами 
в точках Ьп- Будем считать, что окружности уп (л= 1, 2, ..., т) не 
пересекают друг друга. Область диска п обозначим через Sn- Пред­
положим далее, что в каждое круглое отверстие пластины запрес­
сован с заданным упругим натягом круглый диск одинаковой с ней 
толщины. Механические характеристики материала пластины и дисков 
будем считать одинаковыми.

В настоящей статье дается решение задачи в предположении, что 
на контуре у0 могут быть заданы любые граничные условия, а на 
остальных контурах уп (n = 1, 2, ..., т) заданы упругие скачки сме­
щения (3). Здесь впервые дается обобщение решения подобных задач 
и на тот случай, когда при запрессовке дисков центры их смеща­
ются относительно центров отверстий.

Пусть центр диска п (bn, ian) смещается в направлении произволь­
ной оси хп, составляющей с осью х угол 9П и отсекающей на ней 
отрезок Ьп, на величину Зл. Тогда радиальный упругий скачок сме­
щения можно записать в следующем виде (знак минус принимается 
при смещении центра диска в направлении, противоположном оси хп)-.

Sna— 8п І 7“ (tn + t л), tn — (t — Ьп) e- ~'°n Pn, (1)
~rn

где tn и t — соответственно, аффиксы точек окружности уп в систе­
мах ХпУп и ху, Рп^а'п +(Ь'п — Ь°пу,^п = Гп-гп, а г» и г",— соответ­
ственно, первоначальный упругий радиус отверстия и диска до по­
садки.

Решение поставленной задачи сводится (J) к определению функ­
ций ?n(z) и фл(2) комплексного переменного z = X + iy, регулярных 
в соответственных областях Sn (и = 0, 1, 2, .. . , w) и удовлетворяю­
щих заданным условиям на границах:

?о (0 + (0 + Фо (О =f(t) на То- (2)

(О - t^t) - <О) = (t - bn), (3)

9;(0 + ^TW + O) = ° на Y" («= 1,2,.--, т), (4)

где 8л« = 23;аПг„1, х=(3-и)(1 + И)Ч = 2₽; Gr~\ 8n = 28'nGr\ 
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G— модуль сдвига, а ц— коэффициент Пуассона. Кроме того, мы по­
ложили на уп (га = 1, 2, ..., т)

?oW-9„(o=<p;(o, фою-ф„ю = ф;ю- (5)
Из уравнений (3) и (4) найдем значения для 9’ (t) и ф*  (0, а затем, 

вводя новые функции, регулярные в So и равные

* Нижние знаки в выражении F(z) соответствуют знаку минус формулы (1).
** Здесь мы используем метод, предложенный Д. И. Шерманом (2).

ф(г) = Фо(г). Ф(г) = Фо(г) + F(z) *> (6)

F(z) = 2 {^bj 48«+ ~(2pn + 2&ncos 0« - М'6" -М"°п)1± 

п=1 ' L J
, I
±G-bnr]’

будем иметь следующие зависимости на у« (га = 1, 2, ..., т):
Ф (О = Ф» (0 + ф« (О, Ф W = ФЛО + Фп (0 + F (0- (7)

Можно показать (4), что функции 9 (z) и ф (z) аналитически продол- 
жимы из области So в каждую из областей S« (га = 1, 2, . . ., тга) и 
будут регулярными всюду в области S, ограниченной у0 **■

Исключая из уравнения (2) 90 (t) и ф0 (0, получим

9(0 + ^) + Ф(0 = Ж + /(0. (8)
В случае, когда все рп = 0, из уравнения (8) имеем: 

____  ____ « 2г28
Ф (о + и + Ф («) = 2 + ж <8а»

Уравнения (8) и (8а) показывают, что решение нашей задачи сво­
дится к решению задачи для эллипса, решенной впервые Н. И. Мусхели- 
швили (0 и затем другим методом Д. И. Шерманом (5). Второе из 
этих решений дает для контурных значений искомых функций 9*  (а) = 
= 9 (0 и ф’ (ст) = ф (0:

9*  (<т) = а0 + 2 + ° *).

Ф’ (ст) = а0 + [(а_х + Ai) — (fli + О1)] (ст + ст"1) р’2 +
(9)

+2 (а-*р
2 -

г^-^р-2) +^')ў ,

t = R^ + <^, R = Q,b^ — b^, ? = (a + b)c~\ (10)

причем ст —аффикс точки окружности радиуса р и с = 2R — половина 
фокусного расстояния, где о0 = 0, а остальные коэффициенты опре­
деляются из формулы

ак = Ak [(1 -₽'«) + k (о4 - 1) р-^+’Т1- (11)

Полагая f(t) = 0, правую часть (8а) можно с желаемой точностью 
представить в виде следующего укороченного ряда:

$ т г? $
2 - 2и+,+с 2 ^‘+"-сг“1+ >■ <|2>

А=0 л—1 *=°



Сщ = p2 (an + V—1), C2n= p2(an — Va,; — 1), a„ — bn/$R- (13).

Для частного случая, когда т = 2, Ь^ = — ax, b2 = а2 (центры дис­
ков расположены на оси х), cos <р = (2R) 1, cos Фі = а2 (2R) <1,
из разложения (12) получим следующую формулу для Ак:

Л. =__А—Гг282-!^-Н-1)* +^ (А = 1, 2, (14)

 ■ І , ) И і І !

* Степенной двучлен а* 4- а можно представить в виде полинома от /. Для 
определения коэффициентов этого полинома нами найдена рекуррентная зави­
симость, которая может быть использована и при решении других задач теории 
упругости.

3* 3^

™ (1 + х) R L sin 9! ' ' sin 9 J r '

Формула (14) позволяет рассмотреть ряд практически интересных 
частных случаев: 1) |Лі| = |о2І» n8x = rlfo 2) r2 = 0 (запрессован один 
диск); 3) г2 = О, ах = О (диск запрессован в центре эллиптической 
пластины); 4) вытянутый эллипс (полоса) с расположенными на оси х 
дисками и др.

Подставляя значения коэффициентов а*  в формулы (9), переходя 
от а к z*  согласно преобразованию (10), получим искомые решения 
для <р (z) и ф(з).

Для частного случая, когда т = 2, Ьг = — аь Ь2 = а2, функции <р (Z) 
и ф(г) имеют следующие выражения:

?(:)=2U ^z^-j^z* (А±=0,1,...,4 (15)

А=9 *=0

где .
Dk = 7k,k dk + fk,k +2&Й+2 + УМ +4^*4-« + • • • + Y*.« as> 2° — ’

Bk = ykik + p-2*)  dk + YM+2 [— P2 + (k + 1) p“2 + p—2 ЛА+2 +
+ [- 2p2 + (A + 2) p-2 + p-2 <*+ 4] ak+i + .. .

. . . + уЦ-Ц^ P2 + P“2 + P"4 • (16>

В последних слагаемых выражений для Dk и Bk величину $ надо 
заменить на $ — 1, если k имеет четность обратную s. Коэффициенты 
Y*,*+2«  легко определяются из рекуррентной зависимости

у*, *4-2« — —Y*,*4-2(«-i) + Y*-i,*4-2«-i (rt — Ь 2, 3, .*.); (I?)

при этом у*,  *=1,  Уо, *=0  (А=1, 3,...) и у0, * = 2( 1) z (k = 2, 4, 6,..
Компоненты напряжений для области So имеют следующий вид:

Тх 2 [(2^*  + *̂)cos(A  —1)? + (^~l)Z)*cos(A  —3)?]-4-

у к=а -t
) Г ( cos29 — sin2<p) 4- 2ajrcos <р + а) г2 (cos2y — sin2<p) — 2g2rcos <р4-Д2

(г 4- 2«jrcos 9 4- «х)' '2 (г2 — 2a2rcos <р 4- л2)2

(18)

2 kr^ [5*  sin (A - 1) ? - (^- 1) ^>*  sin (k - 3) ?] + 
&=0

( 2rsin <р(й, 4- rcos<p) 2rsin <p (я2 — rcos <p) ) _ r

J (r2 4-2ajrcos 9 4*  я2)2 2 (r2 — 2a2rcos 9 + a2) J
(19)

Нижние знаки соответствуют напряжению ■



Для случая, когда т = 2, 1041 = | а21 = 5 см, А = 2-106 кг/см2, 
а = 10 см, b = 6 см, гх = г2 = 3 см, и относительный упругий натяг 
X = 0,001, нами построены эпюры напряжений для с*  и ву на полу­
осях эллипса (рис. 1). Числовые значения даны в кг/см2.

* Это всегда можно сделать, когда контур v0 — окружность или эллипс.

Отметим, что принятый закон

Рис. 1

для (уравнение (1)) можно ис­
пользовать при решении любых 
задач о запрессовке круглых 
дисков в односвязные или мно­
госвязные области, в частности, 
когда контур у0— окружность(4). 
В случае запрессовки в пласти­
ну дисков других форм (много­
угольник, эллипс и т. п.) закон 
для 3' также можно всегда пл 
найти.

Нами выделена также главная 
часть из разложения для 9*(а)  *,  
когда |«! | = | а21 и = ri 32. 
Взяв в ряде для <р*(а)  два члена,

мы остальные просуммировали с достаточной точностью, положив при 
р = 2и начиная с ^^-5 (а*  = 0 для четных ky.
ak = А*  [(1 - р-4*)  + k (р4 — 1) р-2 (*+ ’)]-’ Л [1 — k (р4 - 1) р-2 <*+»].  (20)

После некоторых преобразований мы получили

= Dn 2 Р~2Л[(1—Р-4*)  4- (Р4—1) йр-2^1’]-1 (afe + sin £<р+ 
1 *=1,3

+ дпр-ю 2 с;(</+<т-*)[  2 4(^ + ^)Г-
*=1,3......7 [*=0,2,4

-аоР-20 2 cA.(s*  + <7-*)
*=1,3,..., 11

2 dk + ст-*)
*=0, 2,..., 8

(21)

где Dn = 4r28j [(1 + х) R sin ср]-1, Dn. = (р2 — р“2) Dn, С' = р-8 sin 5<р, 
С’3 = — р^ (sin 7ф + sin 3<р), Cj = sin 5<р, С? ——р '1 sin 3<р, Cr = 5p_16(sin94- 
+ 4 sin 5q> ф-sin 9<р), С3 = —'10р~8 (sin 3<р + sin 7<р), С5 = 5 sin 5<р, С7 = 

=—Р~8 (10 sin 3<р+3 sin 7<р), C9=p~16(5sin<p-|-6sin5<p), Сп=— Зр~24sin 3<р, 
= Va + Р-8 (1 + cos 4<р), d'^= — 2Р-4 cos 2<р, d\ = — р-8, d0 = 4/2, d2 = 

= — 4р—8 cos 2<р, d^ = 2р-’6 (2 + cos 4<р), <76 = — 4р~24 cos 2% d& = р-32.
Переходя в выражениях для ?*  (а) от а к Z, получим значение 

<р (z). Аналогичным путем получим выделение главной части для ф (z). 
ф(г) можно также получить из уравнения (8а).

В заключение отметим, что изложенный здесь метод можно ши­
роко применить при решении плоских задач теории упругости для 
односвязных и многосвязных, конечных и бесконечных областей при 
запрессовке в них дисков различных форм.
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