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ЭКВИВАЛЕНТНОСТЬ РАЗЛИЧНЫХ ОПРЕДЕЛЕНИЙ ПЛОЩАДИ 
НЕПРЕРЫВНОЙ ПОВЕРХНОСТИ t = f (х, у)

(Представлено академиком А. Н. Колмогоровым 28 XII 1950)

Существует ряд определений площади двумерной поверхности. 
Наиболее принятыми являются определения: Лебега (г), Гёце (1), 
Пеано (2), Каратеодори (3), Хаусдорфа (4). В общем случае параметри­
чески заданной поверхности эти определения неэквивалентны (5).

В настоящей заметке рассматривается класс униформных поверх­
ностей— графиков непрерывных функций, заданных на единичном 
квадрате I. Для таких поверхностей все перечисленные выше опреде­
ления площади оказываются эквивалентными. Более того, оказы­
вается, что для В-множества М, лежащего на униформной непрерыв­
ной поверхности t=f(x,y) ограниченной площади,

ПДМ) = Ис(М) = Ия(М),

где ИДТИ) — поверхностная мера множества М (®), р.с(7И) — его мера 
Каратеодори (3), ^(М) — мера Хаусдорфа (4).

Пусть a€S — точка непрерывной поверхности S и Тг — открытый 
шар радиуса г с центром в точке а. Если ПДД-ПХ)/№->0 при 
г—»0, то а назовем конической точкой поверхности, в противном 
случае — обыкновенной.

1°. Компонента Ка уровня (7) для конической точки a 
состоит из точки пр. а (где пр. a — проекция точки ос на пло­
скость ху).

Допустим обратное, т. е. что компонента Ка множества уровня, 
содержащая точку пр. а, содержит некоторый нетривиальный конти­
нуум L диаметра d^>0. Опишем вокруг точки ос открытый шар Тг 
столь малого радиуса г<^/2, что П/(77ПХ) /№< 1 /32тг. Пусть 
Д/г — открытый^шар^ радиуса г / 2 с центром в ос и Ка — компонента 
пересечения Ls (образ L на поверхности S) с шаром Д/2, содержа­
щая точку а. Ка содержит предельную точку 3 на границе шара Тг/2. 
Рассекая Тгр плоскостями Р, перпендикулярными направлению ар, 
в пересечении плоскостей с Тг и Тгр получим круги; внутри мень­
шего из них и на границе внешнего находятся точки простых дуг 
пересечения X с плоскостями Р, поэтому диаметр каждой дуги г / 2. 
Так как расстояние между крайними секущими плоскостями равно г / 2, 
то П/(ДпХ)^>г2/32 и П/(Д|~]Х)/№;> 1/32тс, что и доказывает свой­
ство 1°.

2°. Пусть £ — фиксированная точка поверхности X и 
а=^£—коническая точка уровня t. Пусть 3>0 доста- 
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точно мало й d («, 8)— диаметр ближайшей к пр.а ком­
поненты суммы уровней £ + 8, t — 8, отделяющей пр. а 
от пр. £ (7). Тогда при 8-»0 d(a., 3)/8—>0.

Так как а —коническая точка, то, каково бы ни было е>0, най­
дется г0(е)>0 такое, что при г<г0

ПДД-ПВ) /№<е. (1)

Рассмотрим ближайшую к пр.а компоненту R множества уровня, 
отличающегося от уровня t0= f (а) меньше, чем на г0 /10, отделяю­
щую пр.а от прД, имеющую диаметр d (O<tZ<ro/lO) и образ 
которой Rs лежит внутри шара То радиуса г0 с центром в а. Пусть 
ее уровень отличается от уровня точки а на 8. Положим A = 8/d. 
Пусть ₽ — точка Rs, отстоящая от а на максимальное расстояние. 
Тогда расстояние р (а, Р) <dy\ + А2. Возьмем шар Тг с центром в а 
радиуса r = 2d]/l+A2. Так как г<г0, то имеет место (1). С другой 
стороны, рассекая поверхность S плоскостями, перпендикулярными 
отрезку, соединяющему точки R\ отстоящие на расстояние d, мы 
получим в пересечении с S простые дуги диаметра d ]/1 4- А2, 
поэтому П/ (Tr ftS)~>d2 ]/Т+ А2 / 8. Следовательно, s >• 1 / 32к ўі + А2, 
откуда Л>)/1 / 1024тс2е2 — 1, т. е. при s-»0 Д-^»оо.

Лемма 1. Если М'—подмножество обыкновенных точек мно­
жества М, лежащего на непрерывной поверхности t — f (х, у) конеч­
ной лебеговой. площади, и П/(7И) = 0, то рн(ЛТ) = 0.

Доказательство. Без ограничения общности М можно считать 
множеством типа G$. Допустим, что, вопреки предположению, 

(ЛГ)>Ь>0. Так как а—обыкновенная точка S, то lim ПДД-П^)/~г2= 
г—>0 

= т (а) > 0.
Разобьем М' на множества Мп (п = 1, 2, ...), относя к Мп те точки 

а€7И', в которых т(а)^-1/п. Можно доказать, что множества Мп суть 
5-множества. В частности, множество конических точек — также 
В-множество. Поэтому найдется номер п, для которого Ь.
Пусть М* € ЛГ — замкнутое множество с цн(М*)^>Ь. Существует 
такое е0, чт0 Для любого покрытия М* системой шаров Q; диаметра 
<С s0 TxPQC^b, где d2Qi — площадь большого круга шара Q,-. Так как 

I
П/(7И*) = 0, то пр.ЛГ можно заключить в открытое множество G 
с П/(G*) </9п. Каждую точку а.^М* покроем шаром Tt с центром 
в а диаметра < е0 /10 таким, чтобы проекции шара принадлежали G 
и ПДГгПВ)/№> 1 / п. Рассмотрим конечное подпокрытие М*: 
Ть ..., Tn, тогда І^ТТ^Ь. Из покрытия Т (Z = 1, .. ., М) выберем 

2=1
шары так: за 7’<п примем максимальный из шаров; отбросим все шары, 
пересекающиеся с Tw, за Т® примем максимальный из оставшихся, 
и т. д. Пусть шары Тр \ ..., концентричны с шарами и втрое 
большего радиуса, чем радиусы (I = 1, .. ., k), они покроют все 
множество М* и S > b. Поэтому Hd'T^^ b/9 и

і І=1

'^> — Zd~T^^>bl9n. Полученное противоречие доказывает лемму.
п І
Лемма 2. Если М — В-множество, состоящее из конических 

точек непрерывной поверхности t=f(x,y) конечной лебеговой пло­
щади, и П/(7И) = 0, то p.H(M) = 0.
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Доказательство. Пусть а € М. Рассмотрим функцию Ф (пр.а, 8) = 
= d(a, 8)/8 (см. 2°). Ф (пр. а, 3)0 при 8->0. Пусть М (р) — множе­
ство тех точек из Ж, для которых Ф (пр. а, 8) < 1/20 при 8 < р. Можно 
показать, что множество М (р) измеримо В.

Пусть лемма 2 неверна, тогда существуют такие и р0О, 
что [М (ро) ] > b > 0.

Пусть А и В — минимум и максимум функции /(х, у/) на квадрате 7. 
Разобьем 7 на лебеговы множества Дх { /(х, у/) >и Д2 (х, .у) < 
< ^4^/ • Тогда либ° Iм (Ро) Л Л] > b / 2, либо [М (Ро) П Д2] > b /2. 

Пусть, для определенности, имеет место первое неравенство. Пусть 
£ —одна из точек минимума /(х, у) и г^>0 таково, что в круге 
О (пр. £) радиуса с центром в прД < А + г/4 (В + А).

Рассмотрим A4*(p0)cz7H(p0) ПДі—замкнутое множество с р.н[ЛГ(р0)] > 
>6/2 и е>0 такое, что [М* (р0)] > b /2; — е-приближение меры
Хаусдорфа. Заключим пр. М* (р0) в открытое множество G такое, что 
nf(Gs)<b/200я. Пусть расстояние от пр. М* (р0) до CG равно т. 
Ясно, что т>0. Разделим отрезок оси t от х/2 (А + В) до В на Зт рав­
ных отрезков длины I точками 70, , tim, причем

Z<minQ0 , 10 , 10 , (2)

Проведя через точки деления горизонтальные плоскости и обозна­
чив через Ms часть М* (р0), попавшую в s-й слой Е {ts_i </< ts},

Зт
получим, что [М* (р0)] = S pi (/ИД > b / 2. Нумеруя слои от 1 до Зт 

5=1
и соответственно с этим рассматривая множества Mi = Жх + М2 4- ..., 
Мц = М2 + ..., Afni = М2 + Мв + ..., для одного из них (пусть для Мц) 
мы имеем: рн (А7ц) > b /3. Рассмотрим s-й слой, принадлежащий Мц, 
и точку аЗМ^ Пусть уровни ts + t, ts_i — t (7 >/) —уровни соседних 
с s-м слоев. В силу свойства 2° и условия (2) для каждой точки 

на одном из уровней ts + t или ^_х — 7 найдется ближайшая 
к пр. а компонента, отделяющая пр. а от пр. 5 и целиком лежащая 
в G. Такую компоненту назовем отмеченной.

Все точки, отделяемые от точки пр. £ отмеченной компонентой К, 
находятся от К на расстоянии -<iZ.

Действительно, поскольку уровень компоненты К не пересекается 
с О (пр. £), расстояния р (пр. & К) > d, откуда следует, что р (пр. а, К) < d.

Обозначим через уД7) сумму длин отмеченных компонент уровней 
ts + t и ts-i — t, отделяющих каждую точку пр. аспр.Ж5 от пр.

Зт—1 Зт—1

Положим X (7) = S vs(t), тогда х W v [(^+' + Л О] , 
где v(^nG)— линейная мера Хаусдорфа множества ARG. Плоская 
вариация W (f, G) функции / на G удовлетворяет неравенству (7) 
V, W> О) = Ча J v (Дт П G) dr < П7(Gs), где интеграл взят по всей длине 
отрезка оси 7, соответствующего значениям функции.

Зт—1

Положим inf S v [(Д^+z + Et^-i) Л G] = L. Это значит, что при 
некотором 7=7О S v [(7^+/0 + Л О] < 27., т. е. и сумма по 
s = 2, 5, .... Зт — 1 диаметров отмеченных компонент уровней 
7^ + 70, ts-i — t0, отделяющих пр. а€пр. Мц от пр. £, также <2/..

Рассмотрим круговые цилиндры высоты Z с основаниями — кругами 
диаметра 3d, где d — диаметр ближайшей к пр.а компоненты уровней 
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is 4* ^o> 6-1 — 4» отделяющей пр. а от пр. Ось цилиндра проходит 
через точку а параллельно оси t, а центр лежит в середине s-ro слоя. 
В силу того, что для точек пр. а, отделяемых отмеченной компонен­
той К от пр.£, имеет место р (пр. а, К) < d, мы получим покрытие 
множества Мц системой цилиндров. Каждый из цилиндров покроем 
шарами Tt следующим образом: рассечем цилиндр на цилиндры высоты 3d 
каждый, кроме, может быть, последнего (6d<^l в силу свойства 2° 
и d 120), и опишем вокруг них шары радиуса 3d У2. Таких
шаров будет N: N-^[1 /6d] + 1. <2[l 16d]<^.l /3d. Сумма площадей их 
сечений d2Tt для одного цилиндра будет ^dl, а суммируя площади 
сечений повеем цилиндрам, получим ^d2Ti^\2nlL. Так как диаметры 
шаров в силу (2) не превышают е, то (ЛТц) b /6, откуда следует, 

что 12rtlL b /6, и L^b 172к/. Поэтому W (f, G)^ § L dt^b / 72к, 
о

следовательно, П/(О*) b / 144л. Мы пришли к противоречию, чем 
лемма 2 доказана.

Из лемм 1 и 2 следует основная лемма.
Основная лемма. ЕслиМ—множество на непрерывной поверх­

ности t = f (х, у) конечной лебеговой площади и П/ (7И) = 0, то 
Нс ~ (^) =

С помощью теоремы И. Я. Верченко (8) и теорем А. Н. Колмого­
рова (9) и Небелинга (10) из основной леммы легко следует теорема 1.

Теорема 1. Пусть t =f(x, у) непрерывная поверхность конечной 
лебеговой площади и М— В-множество на ней.

Тогда
П/(А4) = [іс(Л4) = ^(А4).

Легко показать, что для непрерывной поверхности t = f (х, у) из
(S) < + оо следует ПД5Х+ оо. Из этого обстоятельства и теоре­

мы 1 для случая М = S получается теорема 2.
Теорема 2. Пусть S — непрерывная поверхность. Тогда

Если вспомнить доказанное Радо (2) совпадение площадей по Гёце 
и Лебегу для непрерывных поверхностей t=f(x, у) и доказанное 
И. Я- Верченко (8) для этого случая совпадение лебеговой площади 
поверхности с площадью по Пеано, то из сказанного выше следует 
эквивалентность площадей непрерывной поверхности t=f[x,y) по 
Лебегу, Гёце, Пеано, Каратеодори и Хаусдорфу.

Поступило
5 XII 1950
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