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ТЕОРИЯ УПРУГОСТИ

Член-корреспондент АН СССР Г. А. ГРИНБЕРГ

О РЕШЕНИИ ПЛОСКОЙ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ И ЗАДАЧИ 
ОБ ИЗГИБЕ ТОНКОЙ ПЛИТЫ С ЗАКРЕПЛЕННЫМ КОНТУРОМ*

1. Известно, что как решение плоской задачи теории упругости 
при заданных на контуре области напряжениях, так и решение задачи 
об изгибе однородной изотропной тонкой плиты с закрепленным конту­
ром сводятся к частным случаям следующей общей бигармонической 
задачи: найти функцию ф, удовлетворяющую внутри рассматриваемой 
области (/) уравнению Д2ф = Ф, где Ф — некоторая заданная внутри 
области функция, причем на контуре (s) области заданы в каждой его 
точке значения самой функции ф и ее нормальной к контуру произ­
водной д^/дп.

В случае первой из указанных выше задач нужно положить Ф = О 
и (ф) } = q (s), (дф/дд)(і) = г (s), где q^s) и г (s) — заданные функции 
длины дуги s, отсчитываемой вдоль контура от произвольной его 
точки, ф отвечает в этом случае функции Эри рассматриваемой за­
дачи. Во втором случае надо положить Ф = р (x,_y)/D, где р (х,у) — 
удельная нагрузка на плиту, D — цилиндрическая жесткость плиты, 
причем ф — это смещение некоторой точки плиты и на контуре долж­
ны выполняться условия (ф)(і) = (дф/дп)^ = 0.

Рассмотрим в общем виде вопрос о решении уравнения А2 ф = Ф 
при условиях, что (ф)^ = </(s) и (д^/дп)^ = г (s), где q(s) и r(s) — 
заданные функции.

Полагая в формуле Гаусса — Остроградского

5 - и Аг-) df= J — u^ds
и)

(1)

и = ф и принимая за v любую гармоническую в рассматриваемой обла­
сти функцию, удовлетворяющую, стало быть, уравнению &v = 0, 
получаем:

^Дф<//= J ^(s)j ds, (2)
(/) (■?)

причем правая часть здесь, при заданной V, является известной вели­
чиной. Обозначая, далее, через 6 любую такую функцию, что во всей

* Во время написания этой статьи нам стало известно о существовании работы 
3. X. Рафальсона (1), в которой получены основные результаты, изложенные в п. 1 
настоящей статьи. Мы этот пункт все же сохраняем, поскольку в нем дано весьма 
краткое и прямое изложение существа применяемого метода. 
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рассматриваемой области выполняется уравнение Д6 — Ф, и замечая, 
что, очевидно, ф = 0 — F, где &F—0, находим из (2):

^vFdf — vbdf + b(s) ^._ w(s)]js. (3)
(/) (/) (S)

Пусть известна какая-нибудь полная система гармонических в обла­
сти (/) функций i = Q, 1, 2, . .., оо, т. е. такая, что любая гармо­
ническая в (/) функция может быть выражена в виде конечной или 
бесконечной суммы вида Sa^., где а. — постоянные коэффициенты. 
Образуем из них ортонормированную систему функций фя, п^-0, по 
схеме:

t
n—1

2 спрфр - ?п
р=0

П = 1, 2, . . . , <50, (4)

где Ai и Спр — постоянные, определяющиеся из условий вида

5 =ц)
О при тфп, 
1 при т = п. (5)

Из условий полноты этой системы в указанном выше смысле 
следует, что должно иметь место разложение

со

2 где Fn = $ ^nFdf. (6}
n=0 (/)

Полагая в (3) v = фп, находим:

Fn= J ^df = J ф„6^/+ [^(s) ф„г(в)] ds, (7)
(Л (/) (5)

откуда определяются искомые коэффициенты Fn, а стало быть, и F. 
На этом и заканчивается нахождение величины Дф = 0 — F. Самую 
функцию ф получим теперь, интегрируя уравнение Дф = 0 — F при 
одном из граничных условий (ф)м = ?(в) или (d^ldn)s = г (s) или при 
использовании какой-либо их комбинации.

2. Рассмотрим, в первую очередь, применение этих общих сообра­
жений к решению задачи об изгибе прямоугольной пластинки с за­
крепленными краями. Поместим начало координат в центре О пластины, 
оси ОХ и ОК направим параллельно ее сторонам. Ограничиваемся 
здесь приведением результатов для простейшего случая квадратной 
пластины с длиной стороны 2а и с симметричной относительно сто­
рон квадрата нагрузкой.  В этом случае можно положить:*

* Т. е. нагрузки-р (х, у), удовлетворяющей условиям четности по отношению к х 
и у и условию р(х,у) = р(у, х).

П = tcos V ch + cos a.y ch %x], Ъ k = 1, 2,.. , oo,
(8)

причем легко показать, что эти функции составляют полную, в ука­
занном выше смысле, систему. Составляя из них по схеме (4) — (5} 
ортонормированную систему функций фп, получим выражения вида 
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п
= 4" 2 ВпЛ’ « = 0. ь 2. • • • » (9)

.5=0

где Bns — некоторые численные коэффициенты (см. табл. 1).

Числа Bns
Таблица 1

П ’ ---
0 1 2 3 4

0 0,6601
1 —0,0593 —1,399 — _
2 0,0132 —0,1508 —1,878 _ _
3 -0,0041 —0,0756 —0,1516 —2,258
4 0,0016 —0,0401 0,1004 -0,1428 —2,581

I

3. Применим найденную систему функций к случаю постоянной 
по поверхности пластины нагрузки р = const. Так как в этом случае 
можно положить 0 = ^(x2+j/2 —2а2), то (7) дает, при использова­
нии (9) и (8) и так как ^(s) = r(s) = 0,

<|о>

Для первых пяти коэффициентов ап получаются значения: 
п 0 1 2 3 4
ап —2,724 0,0308 —0,016 0,0065 —0,0030

Для изгибающего момента М (х) вдоль стороны у = а получаем:

-ММ = О(Дф),„ = ^|(-0 — 1— 2 ап 
п=0

п
2 Bns COS a.sX 
.5=0 (И>

Для максимального изгибающего момента — Жтах в середине этой 
стороны, т. е. при х = 0, получается отсюда, при использовании най­
денных выше пяти функций фп, значение — ТИтах = 0,0512/? (2а)2, тогда 
как согласно С. П. Тимошенко (2) точное значение коэффициента 
равно 0,0513. Далее, интегрируя уравнение

• ио

м = тв +^2 -2а3) - F=тв +у2 -2а2) - 2 FnK 
п=О

при условии, что (ф)(і) = 0, легко найдем, в частности, следующую 
формулу для прогиба пластины в центре:

■ (ф)^= 0,202^, (12)

что точно совпадает с соответствующим значением у Тимошенко (2).
Дальнейшее вычисление показывает также, что значения нормаль­

ных производных д^/дп на контуре пластины в пределах точности 
вычисления равны при этом повсеместно нулю.

4. Совершенно аналогичным образом может быть получено с помо­
щью той же системы функций и решение задачи изгиба квадрат­
ной плиты в случае загрузки ее сосредоточенной силой в центре, 
причем за исходное частное решение можно принять решение для 
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той же силы, но для свободно опертых краев. Значения прогиба в 
центре и максимального изгибающего момента, вычисленные при 
помощи пяти функций фл, оказываются в точности равными значениям 
этих величин, приводимым у Тимошенко (2).

5. Система функций фп может быть использована и для решения 
плоской задачи теории упругости для внутренности квадрата, если 
приложенные на контуре его напряжения обладают соответствующей 
симметрией. Нами рассмотрена, например, задача о растяжении такого 
квадрата нормальными к его сторонам силами, равномерно распреде­
ленными вдоль отрезков длиной 2с симметрично относительно сере­
дины каждой стороны. Приводим получающиеся при этом при разных 
величинах отношения с[а значения суммы вх+ су главных напряже­
ний в центре квадрата, отнесенной к P/а, где 2Р — полное усилие, 
приложенное к каждой из сторон:

с/а 1 0,5 0
(sx + sv)a/P 1,998 2,34 2,60

Первый случай соответствует равномерной нагрузке граней и дол­
жен был бы дать значение (а^ + су) а/Р — 2, а не 1,998, т. е. расхож­
дение составляет 0,1%. Последний столбец отвечает случаю сосре­
доточенных сил, приложенных в центрах сторон, и дает значение 
искомого отношения, близкое к 8/к — 2,55, что соответствовало бы 
той же суммарной нагрузке, равномерно распределенной по окруж­
ности радиуса а, описанной из центра рассматриваемого квадрата.

6. Отметим еще следующую общую теорему. Пусть IF и W° 
обозначают Два решения уравнения &W = p(x, y^D изгиба тонкой 
плиты с произвольным контуром под действием нагрузки р(х, у), 
из которых первое отвечает условиям (U/% = (dW/dn){s) = 0, т. е. 
жесткому закреплению на контуре, а второе — условиям (1F)(S) = O и 
(ДЦ7%=0, что соответствует, например, в случае плит с многоуголь­
ным контуром свободно опертым краям. Тогда, если положить в (3) 
и (7) Д W = Д IF0 — F, то имеет место связь:

СО

^/=2^ (13)
А=0

где Р = ( pdf — полная нагрузка на пластину, a W0 и W -г- средние 
(?)

„взвешенные" с весом р (х, у) смещения точек пластины под дей­
ствием той же нагрузки, но при указанных выше различных усло­
виях закрепления. В частности, если нагрузка — это сосредоточенная 
сила, то (13) принимает вид:

СО

4 (^ - «7) = 2 (14)
k=0

где через и W обозначены смещения непосредственно под точ­
кой приложения силы. Отсюда, если известно одно из этих смеще­
ний и найдены Fk, легко найти второе.

Ленинградский физико-технический институт Поступило
Академии наук СССР 18 ХП 1950
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