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MATEMATHKA 

Ю. А. ШРЕЙДЕР 

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ СОВМЕСТНЫХ АЛГЕБРАИЧЕСКИХ 
УРАВНЕНИЙ 

(Представлено академиком И. Г. Петровским. 20 ХИ 1950) 

Методы решения систем линейных алгебраических уравнений (*?) 
делятся обычно на итерационные методы (метод Зейделя, простых 
итераций и др.) и так называемые прямые методы, T. €. методы, даю- 
щие возможность после строго определенного числа операций полу- 
чить точный OTBET (конечно, при том условии, что все арифметические 
операции производятся точно). За последние годы большое распро- 
странение получили прямые методы, в частности, рассматривались (*) 
такие модификации известных схем, которые наиболее приспособлены 
к решению с помощью счетно-аналитических машин. 

Для последней цели особенно существенно, чтобы вычислительный 
процесс состоял M3 большого числа однотипных повторяющихся опе- 
раций. Обычно применяемые методы решения, являющиеся в OCHOBHOM 
(кроме метода Холецкого (*)) видоизменением `схемы Гаусса, приспо- 
соблены для решения хорошо обусловленных (%) систем с положи- 
тельно определенной матрицей. В противном случае даже для хорошо 
обусловленной системы эти методы могут привести к делению на нуль 
или на очень малое число; с последним обстоятельством можно бо- 

роться либо путем перестановки строк (столбцов) матрицы B процессе 
вычислений, либо заранее преобразуя решаемую систему Tak, чтобы 
матрица стала положительно определенной. Первый процесс трудно 
автоматизировать на счетно-аналитических машинах, а второй громоз- 
док и „портит“ исходную систему (3). Метод Холецкого вообще при- 
меним только для положительно определенных матриц. 

В настоящей работе мы указываем метод рещения систем линейных 
алгебраических уравнений, одинаково пригодный для любой хорошо 
обусловленной системы. 

Рассмотрим систему линейных уравнений 

n 
Sawxe=b (=1,2...,n), (1) 
k=1 

которую мы будем иногда записывать B векторной форме 

Ах = В. (2) 

Для того чтобы найти решение системы (2), мы подберем матрицу 
B такую, что 

ВА = лИ, (3) 
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где А — диагональная матрица, a U — унитарная. Тогда решение имеет 
BHI: 

x=U"A"Bb, ) 

причем матрица А”' (обратная к A) и U’ (транспонированная к U) 
легко могут быть определены. При этом для вычислительной схемы 
возможны два различных варианта. Если нам нужно найти только 

решение системы (2), то мы последовательно определяем компоненты 
вектора Bb, а затем с помощью матричного умножения определяем 
рёшение ло формуле (4); если же нам нужно иметь обратную к A 
матрицу A, то мы последовательно определяем элементы матрицы B, | 
а затем вычисляем 1 

А = ' АВ. (5) 

Элементы матриц U и A мы вычисляем в обоих случаях. 
Рассмотрим сначала первый вариант вычислительной схемы. 
Прежде всего заметим, что для TOro, чтобы некоторая матрица С | 

могла быть представлена B виде произведения диагональной на уни- | 
тарную С =AU, необходимо и достаточно, чтобы для  элементов 
матрицы С выполнялись условия 

Хсусы= 0 @й). ©) 
= 

При этом элементы матрицы A суть 
ы | 

ь = б l/ E] ¢y (7) 

Первый этап вычислительного процесса состоит из последовательной 
ортогонализации строк матрицы А. ‘Предположим, что мы уже заме- 
нили систему (1) некоторой эквивалентной системой 

3 
Х ай хь= В1 (=12 ...,n), ® 

для которой_выполнены соотношения 

Хаа =0  (<I<). ) 

Тогда мы заменим v -+ 1-е уравнение системы (9) линейной комби- 
нацией 

ам) = а® ра аба ао + (10) 

к = b 4l b 4 b + .. 00)) 

При этом величины , @)» -+ (” выберем так, чтобы удовлетво-) 
рялись условия A 

\ “ & ы Е ‚ 

Хаа =0 @<y (11 
h=0 
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Условия (11) и (9) дают нам 

n 
£ ey 

(% bl - (12) 
3 (alf)) 

=) 

Наконец, мы полагаем 

ау—а @у) (13) 

После л таких шагов мы придем к системе 

Сх = @, (14) 

которая эквивалентна системе (9). При этом для элементов матрицы С 

сь= ® (15) 

справедливы соотношения (6). Фактически мы применили здесь 
к последовательности векторов (алъ йэ + *-› @л); (@зь @з +)., @эп); -- 
„.. (@пъ @л» .. алп) процесс ортогонализации Якоби (). Этот процесс 
всегда приводит к цели, если указанные л векторов линейно незави- 
симы, т. €. если исходная система (1) совместна. 

Полагая С = AU, мы видим, что 

O SN ау ALl s o — 6 (16) 
_2 

Вычисляя диагональные элементы матрицы A~ по формуле 

T (17) 

X ey 
= 

мы имеем окончательно 

* —2 
х = СЕЛ а. (18) 

Таблица 1 

‘Число Число 
‘Число ‘Число нахождений | извлечений 

Метод решення сложений | умножений | обраткой | квадратного 
| memmuon корня 

Указанный в paGore . . . . . . . . n л9. n 
Метод Айкена () . . ... . ... n*f3 n*3 n — 
Метод исключения с использованием 

° обратной подстановки . . . . . . 3 n3/3 n — 
Метод Холецкого . . . . . .. .. п’{б nl6 n n 
Метод ортогональных BEKTOPOB . . . п n? n 

В табл. 1 указано число арифметических операций, требуемое Hpu 
различных методах решения системы H3 л совместных линейных 
алгебраических уравнений. При этом мы берем только главные члены 
в формулах, выражающих соответствующее число операций. 

Рассмотрим теперь второй вариант вычислительной схемы, служа- 
щий для нахождения элементов обратной матрицы. 

653



А ИОр ЛН е пн ЩИ TR ОЕ РЕСа Рр RN РР Ak 
ней. Далее, мы составляем матрицу В, элементы которой суть 

0, если /> ; 

ч весли (Е 

рь‘,” если )< @ 

(числа ¢ определены формулой (12)). 
Теперь мы имеем, согласно (5) и (16), 

L S AR (19) 

Таким образом, кроме проведенных выше вычислений, нужно лишь 
произвести одно перемножение матриц- 

В заключение я выражаю искреннюю признательность И. С. Бруку 
и И. М. Гельфанду за обсуждение результатов этой работы. 

Поступило 
31 X 1950 
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