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МАТЕМАТИКА
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О (С, а, р)-СУММИРУЕМОСТИ ДВОЙНЫХ РЯДОВ

(Представлено академиком А. Н. Колмогоровым 15 XII 1950)

В этой заметке приводятся некоторые теоремы относительно взаимо­
связи различных методов суммирования (С, а, Р) (а>—1, Р>—1) 
между собой, а также относительно их сравнимости с методом (А) 
для двойных рядов. Обозначения заимствованы из (3).

ОО ОО

Теорема 1. Пусть ряд 2 2 суммируем (С, а, Р) (а, р >— 1) 
т=0 л=0

к S и, при некоторых у>0 и 8>0 таких, что у8< (а + 1)(Р + 1), 
выполняются условия:

Ст = о (т?) при любом фиксированном п, 

^тп — о (п ) при любом фиксированном т.

Тогда двойной степенной ряд
ОО ОО 

f^,y) = 2 ^итпхтУп (2)
/72=0 /2=0

для |л|< 1, |j/| < 1 абсолютно сходится и

y) = S, (3)

когда х и у, стремясь к единице, при некотором X 1 удовлетво­
ряют условию:

, Р+1 8

— (1-у) (4)

Ни в одном из условий (1) о нельзя заменить на О.
Частные случаи этой теоремы, соответствующие у = р + 1, 8 = а + 1 

и у = а4-1, 8 = р + 1, были установлены в (3) (см. также (\2), где 
рассматривались случаи а = р = О, у=8=1иа=Р = 1, у = 8 = 2).

Доказательство первой части этого утверждения мы опускаем. Оно 
может быть проведено аналогично доказательству теоремы 1 в (3).

Покажем, что теорема теряет силу, если в условиях (1) о заменить 
на О. Для этого рассмотрим ряд

ОО ОО

2 (5)
/72=0 72=0
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Легко видеть, что О, = О (тУ) при любом фиксирован- т, п со
ном п; втп = О (ns) при любом фиксированном т.

Между тем, функция f(x, _у) при х и у, удовлетворяющих усло­
вию (4) и стремящихся к единице, предела не имеет.

Следующий пример показывает, что при выполнении всех условий 
теоремы предел f(x, у) может не существовать, когда х и у стремятся 
к единице произвольно.

ОО ОО

Рассмотрим ряд 2 ^Umn с общим членом вида
/и=) л=0

итп = лт« -2 л^-1 + ЛГ₽-1 л/ -2, (6)
’.где 0 < р. < 8, 0 < р < у.

Очевидно, <ттп -» 0, = о^'1) при любом фиксированном п,
т, п—> со

«т = o(ns) при любом фиксированном т.
Однако построенная согласно (2) функция f(x, у) предела не имеет

.при произвольном стремлении х и у к 1. 
Этот же пример вместе с рядом

2 2(-іГ+п^л£
/и=Ю п=Ю

(7)

показывает несравнимость методов (С, а, 3) и (Л).
Пусть Со (а, Р) есть множество двойных рядов, 

(С, а, р) (а, 1) и удовлетворяющих условиям:
суммируемых

lim —< °° ПРИ любом фиксированном п,

_____In (ісЛМ + і)
lim ——;—1—— < оо при любом фиксированном т.

Пусть, далее, Со есть класс двойных рядов, принадлежащих, по 
крайней мере, к одной из совокупностей Со (а, Р), т. е.

Со = U Со (а, Р).
(«. 3)

Через Л обозначается класс двойных рядов, суммируемых методом 
Абеля.

Следующая теорема в известном смысле дополняет теорему 1.
Теорема 2. Классы Со и Л несравнимы.
В справедливости этого утверждения убеждаемся, рассматривая, 

с одной стороны, примеры (5) и (6), иллюстрирующие теорему 1, СО ОО
и с другой стороны, ряд 2 2 где

т=) п=0

Umn = (-\)т-\-п
00 00 л I л iV \АтАп 
ZJ /I /I 
i=0 /=0 ' J '

Данный ряд, как можно показать, не принадлежит классу Со, хотя 
суммируем методом Абеля.
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Ниже мы приводим теорему, указывающую на специфическую 
особенность чезаровского метода суммирования для двойных рядов.

Теорема 3. Методы (С, а, Р) (а,р>>—1) несравнимы, между 
собой.

В связи с этим, как нам кажется, представляет интерес следующее 
предложение, указывающее на ограниченную регулярность метода 
М) (а, ₽>-1).

ОО ОО

Теорема 4. Пусть ряд 2 2 суммируем (С, а, р) (а, р>—1)
777—) П=0

к S и, при некоторых у>0, 8>0 таких, что у8<(а+ 1) (Р + 1), 
выполняются условия:

^тп ~ О (т') при любом фиксированном п,
^тп = о (п5) при любом фиксированном т.

Тогда, при любых а' а и Р' р,

lim = S (а >—1, Pr >—1), (9)

если т и п, стремясь к оо, при некоторых Ki > 0 и К2 > 0 удов­
летворяют условию

— к Щ| а — а' | и“+1 < т < | п т . (10)

Ни в одном из условий (8) о нельзя заменить на О.
Пример ряда с общим членом (6) показывает, что теорема 4 может 

не иметь места при произвольном стремлении т и п к оо.
К теореме 4 примыкает следующее предложение.

ОО ОО

Теорема 5. Пусть ряд 2 2 суммируем (С, р) (а, р>—1) 
т=^ П=О

к S. Пусть, кроме того, для некоторых — 1 < а' < а, — 1 < Р' < Р, 
| Чтп для всех т и п. Тогда, при любых р>0, ^>0, данный 
ряд суммируем (С, К р, р' + q) к S.

СО оо

Следствие. Если частные суммы ряда 2 2 ограничены, 
т—0 л=)

т. е. | Smn 1-СЛ1 для всех т и п, то он суммируем либо не суммируем 
методом (С, а, Р) для всех а>0, р>0 одновременно.

Поступило
30 X 1950
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