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Теорема 1. Пусть аъ а2, ...,а„— система простых корней (\ 2) 
полупростой алгебры Ли G и пусть eXl, eas,..., еХп— соответствую­
щие корневые векторы. Каждому изометричному относительно 
картановскоа метрики отображению (i = 1, 2,..., п) системы 
простых корней на себя отвечает автоморфизм f алгебры G, за­
даваемый формулами

= f(eai) = eaki (i = 1,2, ...,п). (1)

Обозначим через 25 группу всех таких автоморфизмов. Группа 21 
всех автоморфизмов алгебры G разлагается в полупрямое произве­
дение подгруппы 85 и нормального делителя 210, составленного из 
всех внутренних автоморфизмов алгебры G; т. е. % — 21О85 = 8521О, 
23П21О =

Пусть алгебра G задана схемой простых корней. Изометричным 
отображениям системы простых корней на себя соответствуют пере­
становки точек схемы, не меняющие
вида схемы. Для простых алгебр 
схемы простых корней перечисле­
ны в табл. 1. Из этих схем видно, 
что группа $8 является циклической 
второго порядка для А„(/г^>2), 
Dn (п^-5) и Е6, изоморфна группе 
всех перестановок из трех элемен­
тов для и сводится к единице 

Таблица 1

во всех остальных случаях. Таким
образом, наша теорема сразу приводит к картановской классификации (3,s) 
внешних автоморфизмов простых групп Ли.

Фиксируем некоторую картановскую подалгебру § алгебры G. Си­
стему 2 корней G можно представлять себе вложенной в 6. Рацио­
нальную линейную оболочку 2 обозначим через Н. Обозначим через S 
группу всех внутренних автоморфизмов G, переводящих в себя 
Автоморфизмы из S преобразуют в себя систему 2, а следовательно, 
преобразуют в себя и Н.

Доказательство теоремы 1 основано на следующих леммах.
Лемма 1. Если внутренний автоморфизм f полупростой алгеб­

ры G переводит в себя систему 2_|_ всех положительных корней G, 
то он оставляет на месте каждый корень.
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Лемма 2. Для каждого hA H существует такое, что Ы = 
= 9 (А) удовлетворяет условию {К, у) О для всякого положи­
тельного корня у.

Лемма 3. Пусть и S-j. — системы положительных корней 
полупростой алгебры G, отвечающие двум различным способам упо­
рядочения Н. Существует внутренний автоморфизм 96S, отобра­
жающий S+ на S^.

Лемма 4. Если автоморфизм 9 оставляет на месте каждый 
простой корень, то он является внутренним.

Доказательство лемм.
1. Внутренний автоморфизм/, переводящий в себя систему корней G, 

переводит в себя и систему весов любого линейного представления G. 
Будем писать h» g, если h — g = У AYy, где AY>0. Поскольку / 

линейно и переводит в себя S+, из К» g следует/(A)Если 
А — старший вес неприводимого представления и М — любой вес того 
же представления, то А»М ((4), лемма). В частности А»/(А) и 
А»/-1 (А). Из второго неравенства следует /(А)» А. Сопоставляя 
третье неравенство с первым, имеем/(А) = А. Таким образом, / остав­
ляет на месте старший вес любого неприводимого представления. По­
скольку линейная оболочка старших весов всех неприводимых пред­
ставлений G совпадает с .6, / оставляет на месте любой элемент

2. С каждым корнем у связан внутренний автоморфизм 9У из S, 
действующий в Н по формуле 9У (А) = h — 2 у. Очевидно, что, от­
правляясь от любого элемента ИДИ, можно посредством цепочки пре­
образований 9У1, 9У„... притти к элементу А', который для любого по­
ложительного корня у удовлетворяет условию 9У (А') А', т. е. (А', у) О 0.

3. Выберем h^H так, чтобы для любого корня у, не принадлежаще­
го S+, имело место (А, у)<0. В силу леммы 2, существует элемент 
такой, что (9(A), у)^-0 для всех корней у € S_|_. Последнее неравенство 
равносильно (А, 9-1 (у)) О 0, ибо автоморфизмы сохраняют картановскую 
метрику. Следовательно, 9-1 (S+) cz или S+ cz 9 (Sy)- Из этого вклю­
чения следует равенство S-p = 9(S+), ибо в противном случае 9(2+) 
должно было бы содержать пару элементов с суммой, равной нулю, 
между тем как S+ такой пары не содержит.

4. Корневой вектор е^ определяется однозначно с точностью до 
пропорциональности условиями а о еу= (а/, у) е^ (i = 1, 2,..., п). Поэтому 
для автоморфизма 9, удовлетворяющего условиям леммы 4, все кор­
невые векторы являются собственными. Пусть 9 (е,ф = а^- Выберем А; 
так, чтобы ехр А; = at и рассмотрим элемент ИДИ, для которого (А, а/) = А/ 
(i = 1, 2,..., п). Положим Их = h □ х. Внутренний автоморфизм ф = exp Н 
удовлетворяет, очевидно, условиям ф (еа) = 9 (еа;) G = 1, 2,..., п). Из 
соотношений (9 фоф, 9 (е-а.)) =(ф (еаг), ф (е_а;)), вытекающих из инвариант­
ности картановского скалярного произведения, следует ф (е_а;) = 9 (е_а/) 
и, в силу теоремы 16 работы (2), ф = 9.

Доказательство теоремы 1. Существование и единствен­
ность автоморфизма f, удовлетворяющего условиям (1). вытекает из 
теоремы 16 работы (2). Соотношение 23 П 210 — {g} следует, из леммы 1. 
Докажем соотношение 21 = 21О23.. Пусть 9€21. По теореме о сопряжен­
ности картановских подалгебр (см., например, (3) или (5)) существует 
внутренний автоморфизм фъ переводящий 9 (@) в & Автоморфизм 
?i = Фі? преобразует в себя Н.

Пусть S+ — система всех положительных корней относительно 
какого-нибудь порядка. Тогда система S^ = 91(S4-) может рассматри-
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ваться как система всех положительных корней относительно нового по­
рядка, задаваемого соглашением: у>0 в новом смысле, если 91 (т)>0 
в старом смысле. Согласно лемме 3, существует ф2€5, для которого 
ф2 (Si) = Автоморфизм 92 = Ф2Т1 переводит в себя S+, а следова­
тельно, переводит в себя и систему а1( а2,..., а„ простых корней. Пусть 
Ф„ (а/) = (t= 1,2, ...,п). Рассмотрим автоморфизм f, определенный
формулами (1). Полагая 93=/~'92> имеем 93(«,) = аг- (г = 1, 2,..., п). 
Согласно лемме 4, 93 — внутренний автоморфизм. Имеем 93=/ ’ФгФл 
откуда <р = ф/, где ф — фі 1 фг /€25»

Пусть — автоморфизм, преобразующий в себя Из проведен­
ного доказательства нетрудно вычитать следующий алгоритм для 
решения вопроса о том, является ли 9 внутренним автоморфизмом.

Выбирается некоторый элемент h из Н так, чтобы (А, аг) > О, (А, а;) =у= 
(h, а7) (i,j = 1,2,... ,п\іД=у). Отправляясь от hr = 9 (А), строится, как 

при доказательстве леммы 2, последовательность А2, А3, А4, •. •, где 
Ай+1 = 9Тй (А*), А*+1 > А* (А = 1,2,3,...). Пусть эта последовательность 
обрывается на hr- Тогда для того, чтобы автоморфизм 9 был внутрен­
ним, необходимо и достаточно, чтобы Аг = А.

Применим этот алгоритм к автоморфизму 0, заданному формулами 
0 (еа;) = е_а? 0 (е_а.) = еа/ (i = 1, 2,..., п) (из которых вытекает 0 (А) = —А 
для любого h^H). Мы придем к следующей лемме.

Лемма 5. Автоморфизм 0 является внешним для алгебр Ап (п 2), 
д2А+1 и Е6 и является внутренним для всех остальных простых 
алгебр. Для полупростой алгебры G автоморфизм 9 является внут­
ренним тогда и только тогда, когда он является внутренним для 
всех простых идеалов, на которые разлагается G.

(Поскольку среди простых алгебр обладают внешними автоморфиз­
мами только Ал(п>2), £>„(п>3) и Ее, проверку приходится прово­
дить только для них. Для алгебр Ап и £>п, допускающих весьма про­
стое матричное представление, быстрее, чем общий алгоритм, ведут 
к цели прямые методы, основанные на том, что если в пространстве 
представления выбрать базис из весовых векторов, то автоморфизм 0 
принимает вид 0 (Д') = — X', где X' обозначает транспонированную 
матрицу.)

Из леммы 5 легко вывести перечисление всех неприводимых само- 
контрагредиентных представлений полупростых алгебр Ли (т. е. пред­
ставлений х^-Х, эквивалентных контрагредиентному представлению 
х-* — X'; впервые такое перечисление было дано (в другой форме) 
А. И. Мальцевым (6)).

Теорема 2. Все неприводимые представления алгебр Вп, Сп, D^, 
G2, Eit Е7, Eg являются самоконтрагредиентными. Среди неприводи­
мых представлений алгебр Ап (п 2), £>2*4-1, Е6 т а б л и а 2 
самоконтрагредиентными являются те и только
те, старший вес которых инвариантен при всех 
автоморфизмах из 25 (для этого схема пред­
ставления (4) должна иметь вид, указанный в 
табл. 2). Для того чтобы было самоконтра- 
гредиентно неприводимое представление полу­
простой алгебры Ли, необходимо и достаточно, 
чтобы связные компоненты, на которые распа­
дается соответствующая схема, отвечали само- 
контрагредиентным представлениям.

а2 а3 Щ аг а.

а,

Qf а2

О} a^-r а2/г

Доказательство. Если А — система весов некоторого представ­
ления, то 0 (А) — система весов контрагредиентного представления. 
Для самоконтрагредиентности необходимо и достаточно, чтобы 0 (Д)=Д. 
Если 0 € 210, то это условие выполнено для всех представлений. Поэто­
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му, согласно лемме 5, несамоконтрагредиентные представления могут 
быть только у Дп(га>-2), Е6. Для каждой из этих алгебр груп­
па 23 содержит, кроме единицы, только один элемент. Назовем его f. 
Из разложения 6 =/ф (ф€210) следует О (А) = /(А). Системы весов двух 
неприводимых представлений совпадают тогда и только тогда, когда 
совпадают старшие веса. Поэтому /(А) = А тогда и только тогда, когда 
/ (Л) = Л, где Л — старший вес системы А.
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