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МАТЕМАТИКА
ЦЗЕ-ПЕЙ ЧАН

РЕФЛЕКТИВНЫЕ ОПЕРАТОРЫ В УНИТАРНОМ ПРОСТРАНСТВЕ

(Представлено академиком А. Н. Колмогоровым 28 XI 1950)

В настоящей статье мы рассматриваем линейные замкнутые опера­
торы в унитарном пространстве (т. е. пространстве, в котором пред­
полагаются выполненными все аксиомы гильбертова пространства за 
исключением аксиомы сепарабельности), которые переводят свою 
область определения в некоторое ее подмножество. Такие операторы 
называются в этой работе рефлективными. Основная теорема утверж­
дает, что всякий линейный замкнутый симметрический (или нормаль­
ный) оператор рефлективен тогда и только тогда, когда он ограничен. 
Построен также пример, который показывает, что эта теорема неверна 
для общих линейных замкнутых операторов даже алгебраического 
типа (г).

Определение. Линейный замкнутый оператор называется ре­
флективным, если он переводит свою область определения в некоторое 
ее подмножество.

Пусть Dt и Dp— области определения замкнутого линейного опе­
ратора Т и его квадрата Т2, соответственно. Тогда предыдущее опре­
деление эквивалентно равенству

Dj\=[Dt •

Докажем сначала следующую теорему:
Теорема 1. Если. Т — замкнутый линейный рефлективный опе­

ратор в унитарном пространстве 31, то существует положитель­
ная константа С такая, что

где || T2f ||, || Tf || — нормы образов элемента f по отношению к 
операторам Т2 и Т, соответственно.

Пусть Sr—неймановский график (ср. (2)) оператора Т, т. е. мно­
жество всех точек {/, Tf} пространства ЗІ2 = ЗІ X 31- Так как Т—ли­
нейный замкнутый оператор, то Sr—замкнутое линейное многообра­
зие в 312-

Мы можем рассматривать само Sr как унитарное пространство 
и определить в нем линейный оператор Q следующим образом:

[ О {f, Tf} = {Tf, Tf} при /б Dr.

Очевидно, Q— линейный замкнутый оператор в унитарном про­
странстве Sr, областью определения которого является все простран­
ство Sr- Согласно обобщенной теореме Теплица (3), оператор О должен
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быть ограниченным, т. е. существует положительная константа С 
такая, что

||ОД<С||£|| при^€»г. (1)

Так как все элементы пространства 33г имеют вид {/, Tf}, то мы 
можем положить

g = {f, Tf}
и вычислить нормы в предыдущем неравенстве:

II Vg || = || Q tf Tf} И = И {Tf, Tf} И = (И Г/ И® + И ТУІРЛ 
un = iitf тліі=(^

Тогда (1) примет вид

di эт+и т^'^ст* + и 
или

\\Tf\\* + \\Tf\\*^C*(\\f^^^

Отсюда непосредственно следует, что

WT^fW^c^Wf^ + WTfn

Из только что доказанной теоремы легко может быть получен 
следующий результат:

Следствие. Точечный спектр замкнутого линейного рефлектив­
ного оператора есть ограниченное множество.

Теорема 2. Всякий рефлективный замкнутый нормальный опе­
ратор ограничен.

Доказательство. Пусть Т — замкнутый нормальный оператор. 
Согласно спектральной теореме (2), имеет место интегральное пред­
ставление

Т = \zdK,, 
о

где Кг — спектральная функция нормального оператора Т, a G — вся 
комплексная z-плоскость.

Мы имеем
WTfW^^z^dw^fW2 ■ 

а
и

||7У||г = \\z\*d\\K,fW*. 
о

Если Т рефлективен, то, в силу теоремы 1, имеет место неравен­
ство

$ I z М| И® < | z |2 d || Kzf II2 + Ц/ІІ2) ,
а 'а '

или
I г М II Kzf II2 < С2 (| z |2 + 1) d И Kzf ||г при /€ DT. 

g а

Подинтегральная функция в левой части имеет больший порядок 
на бесконечности, чем подинтегральная функция в правой части; 
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отсюда мы заключаем, что спектр нормального оператора Т ограничен. 
Следовательно, оператор Т ограничен, и теорема доказана.

Теорема 3. Всякий, рефлективный замкнутый симметрический 
оператор ограничен.

Доказательство. Пусть Т — рефлективный замкнутый симме­
трический оператор. Рассмотрим произведение Т’Т оператора Т и его 
сопряженного Т*. Тогда Т’Т—самосопряженный (следовательно, нор­
мальный) оператор; он ограничен тогда и только тогда, когда ограни­
чен оператор Т. Поэтому достаточно показать, что Т’Т ограничен.

Так как Т симметричен, то Т’ есть расширение оператора Т; сле­
довательно,

T’Tf—T^f при f^Dw

В силу рефлективности оператора Т легко видеть, что 

(T'Tyf=T*T(Tif)=T’^f)--=Tif при ft Dtt-

Следовательно,
= Dtt,

т. е. самосопряженный оператор Т’Т рефлективен. Согласно теореме 2, 
отсюда следует, что Т’Т ограничен.

Следует отметить, что теорема 3 неверна для общего линейного 
замкнутого оператора даже алгебраического типа. Противоречащий 
пример можно построить следующим образом.

Пусть § — гильбертово пространство, состоящее из всех после-
со

довательностей (х1( х„,...) комплексных чисел таких, что S | Xi |2 схо- 
і=і

дится.
Обозначим через множество всех элементов пространства $ 

вида (ах, ах, а2, а2, а3, а3,...), а через — множество всех элементов 
из © вида (О, Рр ₽2, р2,...).

Тогда:
1. и ®?2— линейные замкнутые многообразия в
2. Пересечение многообразий и ЭД2 состоит из одного только 

элемента 0.
3. Сумма Т?! 4- (т. е. множество всех элементов вида fi+fv

где плотна в ф.
4. + (например, элемент (1, —Vs. —llt, Ч5> — Ve. •■•)

не принадлежит Э?! + €Й2).
Мы можем теперь определить линейный оператор Т на множе­

стве SK1 +
Положим

для/хбЭДь
= для/2€ЭД2 

и
7'(/1+Л)=Л + 2/а.

В силу 1—4 легко видеть, что Г —линейный замкнутый оператор, 
область определения которого плотна в гильбертовом пространстве & 
но не совпадает со всем этим пространством.

Следовательно, оператор Т неограничен.
То, что оператор Т алгебраического типа, следует из соотношения;

(Т-/)(Т-2/)/=0 для/€Г>т = Я + ^2. 
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где / — единичный оператор. Другими словами,, оператор Т удовле­
творяет алгебраическому уравнению (X — 1)(Х— 2) = 0.
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