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МАТЕМАТИКА

М. А. КРАСНОСЕЛЬСКИЙ

ОПЕРАТОРЫ С МОНОТОННЫМИ МИНОРАНТАМИ

(Представлено академиком А. Н. Колмогоровым 4 XII1950)

М. Г. Крейну и М. А. Рутману принадлежит разработка основных 
понятий и положений теории операторов, оставляющих инвариантным 
конус в некотором банаховом пространстве (см. (х), где эти исследо­
вания систематизированы). В частности, ими были получены признаки 
существования собственных векторов у некоторых монотонных поло­
жительных операторов.

Оказывается, что „конусные" методы приложимы и при изучении 
немонотонных операторов. В настоящей заметке мы приводим неко­
торые результаты, полученные в этом направлении.

Вторая часть заметки посвящена изучению структуры множества 
собственных векторов положительных операторов.

Г. Приведем ряд определений из (^.
Пусть Е—банахово пространство. Замкнутое выпуклое множество 

KczE называется конусом, если из х(К следует, что tx^K при 
всех и если из каждой пары элементов х, —х (||х||=^0) по 
крайней мере один не лежит в К- Конус К позволяет ввести в Е 
полуупорядоченность: пишут или у~^х (х,у£Е), если у — хОК- 
В частности, х>-0, если х^К (6 — нуль пространства А).

Оператор А (вообще говоря, нелинейный), действующий в Е, 
называется положительным, если АКаК. Оператор А называется 
монотонным, если из следует, что

Общий путь установления существования собственных векторов 
у вполне непрерывных положительных операторов заключается в сле­
дующем: отыскивают собственные вектора близких к исследуемому 
операторов и совершают предельный переход, который оказывается 
возможным в случае, когда собственные числа близких операторов 
ограничены сверху.

При доказательстве теорем, приводимых в настоящей заметке, мы 
определяли „близкие" к изучаемому оператору В операторы Вп фор­
мулой

Btlx = В (х -j——,

где и — соответствующим образом подобранный элемент из конуса. 
Оценка собственных чисел производилась при помощи леммы: 
Лемма. Пусть А — монотонный положительный оператор.

Пусть для некоторого такого элемента и^Е, что —и^К,

cA^tu^^tu (0<7<у), (1) 
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где с, у > 0. Пусть для некоторого х б /С, х — у и € К, 

х^аАх, х^^и. (а, ₽>0).

Тогда обязательно а^с.
Важность условий типа (1) при установлении существования 

собственных векторов была впервые выяснена М. А. Рутманом в его 
кандидатской диссертации (2).

2°. Будем говорить, что вполне непрерывный оператор В имеет 
монотонную миноранту А, если оператор А монотонен, поло­
жителен, вполне непрерывен и удовлетворяет условию (1) на неко­
тором элементе и£Е, —иАг.К, и если на всех элементах конуса 
выполняется соотношение

Вх Ах.

'Для простоты .будеТи ниже считать, что у = оо в условии (1) для 
оператора А.

Теорема 1. Вполне непрерывный, оператор с монотонной мино­
рантой имеет в конусе собственные вектора любой нормы.

Приведенная теорема содержит, в частности, ряд признаков 
М. А. Рутмана существования собственного вектора для монотонных 
операторов, содержащихся в § 9 статьи (4) (как указано в введении 
к (*), результаты эти принадлежат М. А. Рутману).

3°. При доказательстве существования собственных векторов 
у положительных операторов обычно (\ 2) пользуются леммой Роте 
(3), вытекающей из принципа Шаудера неподвижной точки, из которой 
следует существование собственного вектора у положительного вполне 
непрерывного оператора А на пересечении сферы S с конусом А, 
если

inf || Ах || >0.
хб^Пк

Эта лемма позволяет установить существование собственных векто­
ров различной нормы, однако не позволяет исследовать структуру 
множества собственных векторов в конусе.

Будем говорить, что множество F собственных векторов образует 
непрерывную ветвь (ср. определение в (4)), если граница каж­
дого открытого множества, содержащего 0, имеет общие точки с F.

Теорема 2. Множество собственных векторов вполне непре­
рывного оператора с монотонной минорантой образует в конусе 
непрерывную ветвь.

Отсюда следует, в частности, что множество собственных векторов 
монотонных положительных операторов (существование которых 
установлено в § 9 статьи (х)) образует в конусе непрерывную ветвь.

При доказательстве теоремы 2 вместо леммы Роте мы пользовались 
следующим утверждением.

Лемма. Пусть S — граница некоторого открытого множества, 
содержащего 0. Пусть положительный вполне непрерывный опера­
тор А удовлетворяет условию:

inf || Ах || >0.

Тогда оператор А на S[\K имеет собственные вектора.
Отметим в заключение параграфа, что теоремы 1 и 2 аналогично 

формулируются для случая, когда исследование проводится на пере­
сечении конуса с некоторым шаром, — здесь, естественно, устанавли­
вается существование непрерывной ветви положительных собствен­
ных векторов в шаре.
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4°. Теоремы 1 и 2 непосредственно применяются к установлению 
существования положительных собственных функций у нелинейных 
интегральных уравнений.

Рассмотрим уравнение Гаммерштейна

?(х)>Х J/<(х,у)/|>,г<р(у)]4/у. '(2)
о

Будем предполагать при этом, что выполнены условия, обеспечиваю­
щие полную непрерывность оператора, определенного правой частью 
уравнения (2), в соответствующем функциональном пространстве С 
или Lp.

В случае, когда ядро К(х,у) удовлетворяет условию

О < т К(х, у) М < оо (х, y^G), 

существование непрерывной ветви положительных собственных функ­
ций в соответствующем функциональном пространстве следует уже 
из условия

f (х, и) S(и) [(x€G, 0<«-<оо), (3)

где S (и) — неотрицательная неубывающая функция.
В случае же, если на неотрицательное ядро К(х,у) наложено 

более слабое ограничение

\ К (х, у) dy а. > О (х € G), 
о

то для существования непрерывной ветви положительных собствен­
ных функций у уравнения (2) нужно потребовать, чтобы выполнялось 
условие

f (х, (x^G, (4)

где Р — некоторое положительное число. ~
Рассмотрим несколько более общее уравнение

ф(х) = X J К [х, у, ?(у)] dy. (5)
X S “

Пусть К(х, у, и) (а-^х, у<^Ь, 0-С«<оо) непрерывная по всем 
переменным функция, удовлетворяющая условию

К(х, у, «) > А (х, у, и) (а <:'х, у оо), (6)

где А (х, у, и) — неотрицательная, непрерывная по всем переменным 
функция, не убывающая по и, причем А'и (х, у, 0) непрерывна, неотри­
цательна и 

ь
j Дц (х, у, 0) dy > 0 (а <’х < Ь). 
а

Тогда уравнение (5) имеет непрерывную ветвь положительных 
собственных функций.

Уравнение (5) изучалось „конусными" методами в (х) (при ограни­
чениях, обеспечивающих монотонность соответствующих операторов). 
Отметим, что условия последнего утверждения § 9 в (J) недостаточны — 
они не обеспечивают положительности оператора.
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Заметим еще, что из выполнения условий (3), (4) или (6) лишь 
для значений и из некоторого сегмента следует существование непре­
рывной ветви положительных собственных функций лишь в пересе­
чении конуса с некоторым шаром пространства С непрерывных 
функций.

Для уравнений Лихтенштейна

= S ••• S Kn(x;y1,...,yn)'p(y1)...<p(yn)dy1...dyn 
л=1 G G

(где все ядра непрерывны и оператор, определенный правой частью,, 
вполне непрерывен в единичном шаре пространства С непрерывных 
на G функций) существование собственных функций малой нормы 
следует (4) уже из существования у ядра (%, у) собственного числа 
нечетной кратности и, в частности, в силу теоремы Ентча (5), из 
выполнения условия

Ад (х, у) dy а > О (%€G). (7)
о

Если ядро Кх (х, у) удовлетворяет условию (7), а остальные ядра 
неотрицательны, то существование непрерывной ветви положительных 
собственных функций в единичном шаре пространства С следует из 
теорем 1 и 2 (существование собственных функций вытекает и из ре­
зультатов М. А. Рутмана). В случае, если ^(х, у) = 0, исследование 
несколько усложняется и для установления существования непрерыв­
ной ветви положительных собственных функций нам приходится 
требовать, чтобы все ядра, не равные тождественно нулю, удовле­
творяли условию

О< т<Кп (а; уь •..,у.) <М< оо (%, ylt ■■■,упЕ О).
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