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О ЛИНЕЙНЫХ УРАВНЕНИЯХ В НОРМИРОВАННЫХ 
ПРОСТРАНСТВАХ

(Представлено академиком А. Н. Колмогоровым 4 XII1950)

В настоящей работе устанавливаются необходимые и достаточные 
условия того, что для линейного оператора А имеет место известная 
теория Ф. Нетера (см., например, (2)).

Теорема 1 по существу является обобщением теоремы 1 С. М. Ни­
кольского (см. (х)).

Будем рассматривать дистрибутивные ограниченные операторы, 
определенные на всем нормированном пространстве R (в R определено 
умножение на комплексные числа (х)).

Теорема 1. Следующие утверждения эквивалентны:
Г. Однородные уравнения Ах = 0 и АХ = 0 имеют конечные числа 

решений, оператор А нормально разрешим и разность между числами 
решений уравнений Ах — 0 и АХ = 0 равна х(А) = х, причем х ^0 
(х>0).

2°. Оператор А представим в виде суммы двух линейных опера­
торов

А = D + Т,

где D имеет обратный слева * (справа), уравнение DX = 0 (Dx = 0) 
имеет ровно — х (х) решений и Т вполне непрерывный оператор.

* Говорим, что оператор D имеет обратный слева (справа), если существует огра­
ниченный оператор D-1, определенный на всем пространстве, такой, что D'1 D = Е 
(DD-i = Е).

** Операторы D* и К* определены в К.

3°. Оператор А. представим в виде суммы двух операторов
A = D ф К,

из которых D имеет обратный слева (справа). Уравнение DX = Q 
(Dx — О) имеет — % (х) решений и К—конечномерный оператор.

4°. Оператор А представим, в виде:

A =D' + К' **,

^где D*  имеет обратный справа (слева), уравнение D*X  = 0 
2)‘Т = 0) имеет —х (х) решений и К*  — конечномерный оператор.

5°. Оператор А можно представить в виде:

A^D" + Т*,
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где D* имеет обратный справа (слева), уравнение D'X = 0 (D‘ Т = 0) 
имеет — х (х) решении и оператор Т* вполне непрерывный.

Свойства 1°, 2°, 3° эквивалентны между собой. Во-пер­
вых, покажем, что из свойства 1° следует свойство 3°. Пусть 
хьх2, . .., х —линейно независимая система решений уравнения Ах= 0; 
Хь Х2, ..., Xk— линейно независимая система решений уравнения 
АХ = 0 и пусть системы flt f2,..., fk; уь у2, ..., yk. соответственно 
биортогональны к системам решений уравнений Ах = 0 и АХ = 0. 

k
Рассмотрим оператор Аус = Ах + (х)Уі-

і=1
Уравнение Агх = 0 имеет единственное нулевое решение.
В самом деле, если хл есть решение уравнения Аус = 0, то оно 

является также решением уравнения Дх = 0, так как, применяя к эле- k
менту Ах0 + 'S\fi(x0)yl = 0 функционалы Х„ 4 = 1, 2,..., k', получаем 

i=i
/«(х0) = 0, 4= 1, 2, ...» й, (1)

т. е. Ахо = О. Значит, х0 можно представить в виде линейной комби­
нации

= У fi (*о) ХЬ 
1=1

учитывая равенства (1) получаем х0 = 0.
Уравнение Д1Х = 0 имеет следующие —х линейно независимых 

решений: ^+і, ^*+2, • •., Х^- Пусть XQ удовлетворяет уравнению

_ _ k
A1X=AX + ^X(yi)fi = Q.

І=1

Применяя функционал АГХ к элементам Xi, i = 1, 2, .. . ,k, ’полу- 
v

чаем Хо (у;) = 0, г = 1, 2, . .., к. Значит, Хо = 2
І=*+1 

k'
Обозначим через L подпространство линейных комбинаций

4=1
через Li —подпространство, где X(x) = 0, i = 1, 2,..., k'. Прямая 
сумма L + Li равняется всему пространству R (г). Значит, всякий 
элемент х пространства R представим в виде

k'
х = v + 2 ciyit где v€Lv

Любой элемент пространства можно еще представить в виде

а

х = V' 4- 2 < х‘’ 
1=1

V' принадлежит подпространству L\, где fi (f) = 0, 4 = 1, 2, . .., k 
Заметим, что для каждого существует единственное v' € L
такое, что Av' = v. Образ оператора А± замкнут, т. е. оператор А
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нормально разрешим. Действительно, пусть г €/?, тогда z можно пред­
ставить в виде

2 = ^ + 2 
і=1

Покажем, что из условия X, (z) = О, i = k + 1, • • •, k', следует раз" 
решимость уравнения Агх = z.

Из условий Xi (z) = 0, i = k + 1, . . ., k', следует, что можно z пред­
ставить в виде: 

ь.
+ 2a^- 

/=і
Решением уравнения 

k k
Ах+ 2 fi (х)Уі = + 2 “‘У1 

t=i і=і
является элемент 

k

х = ^ + 2а;Х-
i=i

где обладает свойством Av\ = vv
Из доказанного получаем, что на образе Av который равен Li + L2 

&
—подпространство линейных комбинаций существует ли-

і=і
нейный оператор ДГ1, являющийся левым обратным для Дг ^Доопре­
делив ДГ1 на все пространство следующим образом: АГ1уі = 0, 

k
i = k 4- 1, . . ., k', и обозначая Аг = D, Кх = — ^ ft (х)Уі, получаем: 

i=i

A = D +К,

где D— обратимый слева, DX = 0 имеет —х решений и К—конечно­
мерный оператор.

Из свойства 3° следует 2°, так как конечномерный оператор вполне 
непрерывен.

Докажем, что из свойства 2° следует свойство 1°. Оператор 
А = D + Т нормально разрешим, т. е. образ оператора А замкнут. 
В самом деле, (D + Т) х = (Д + 7\) Dx, где Т\ = TD^1. Линейное под­
пространство Г, образованное элементами Dx, замкнуто.

Если на Г рассмотреть оператор Е + Т\, то его образ также обра­
зует линейное подпространство, что доказывается в точности, как если 
бы считать этот оператор определенным на всем R.

Остается показать, что х (D + Т) = х.
Из левых обратных операторов к D выберем тот, который равен 

нулю на подпространстве, биортогональном к подпространству реше­
ний уравнения DX = 0; обозначим его через Л-1.

Оператор DD^ удовлетворяет теоремам Фредгольма. Значит, 
DD~r = В + Т, где В обратимый и Т вполне непрерывный (*),

(D + Т) D^ = В + Т2, D^(D + T) = B+Tt. (2)

Обозначим число решений уравнения (D + Г) х = 0 через kv 
сопряженное уравнение имеет k±— Xj решений. Число решений 

тогда 
урав- 
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нения D1 (D + T) X = 0 равно kx — хь так как уравнение D-1X = О 
имеет единственное нулевое решение.

Уравнение (D + Т) D^1 х = 0 имеет —х 4- решений. Учитывая 
равенства (2), получаем:

kr — Xj = — х + kv т. е. хх = х (D + Т) = х.
Свойство 3° влечет за собой свойство 4° и j4° вле­

чет 5°. Первая часть утверждения следует из того, что D имеет 
обратный справа и К—конечномерный оператор. Вторая часть утверж­
дения тривиальна.

Свойство 5° влечет за собой свойство 1°. Оператор 
A=~D* + Т*, по доказанному, нормально разрешим, значит, операторы 
А и А также нормально разрешимы (3).

Рассмотрим оператор А как исходный (по отношению к Л (и пока­
жем, что х(Л) = — х.

Образ оператора D" есть все пространство R. Уравнение D*X = О 
имеет, по условию, — х решений Zb Z2,..., Zy_. Пусть Тр Y2, ... 
.. , Y—x—элементы R такие, что

Любой элемент f^R можно представить в виде (х)

/ = 9 + 2 О 7;, где Т, (ф) = 0, i = 1, 2, . . •, — х.
/=і

Подпространство, где % (<р) = 0, обозначим через L". За опера­
тор О*-1 примем оператор, переводящий все R в L*, т. е. D*~l (R)=L*.

Из леммы Никольского (^), лемма стр. 152) следует, что уравне­
ние D*-1 Y = 0 имеет точно — х решений.

Оператор D*^ (D* -В Т*) удовлетворяет теоремам Фредгольма. Обо­
значая число решений уравнения (D’ + T*) Y = 0 через kr (оно конечно) 
и допустив, что х (Л) = Ур получаем + *х = k1 — к , т. е. 
хх= х (Л) = — х.

Остается показать, что уравнения

Лх = 0 и ^Т=0
имеют одинаковое число решений. Этим теорема будет полностью 
доказана.

Пусть уравнение Ах = 0 имеет г решений Хр х2, . . ., хг и пусть 
/р А» ■ • • > fr — система функционалов, биортогональных к хь х2,..., хг, 
т. е. fi (х/) = 8ц. _

Из нормальной разрешимости оператора А следует, что его- 
образ есть множество функционалов f, для которых /(%*) = 0, 
й = 1, 2, .. . , г. Любой функционал f^R можно представить в виде О

/ = ?+
k=i

Значит, уравнение ЛТ = 0 имеет точно г решений (на основании 
леммы Никольского).

Поступило
4 XII 1950
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