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Аннотация. Рассмотрены линеаризованные уравнения Эйлера, определяющие за-

крученное осесимметричное течение идеальной несжимаемой жидкости. Скорость 

основного течения имеет одну нетривиальную (азимутальную) компоненту, завися-

щую от радиальной цилиндрической координаты. Построены точные решения, 

определяющие растущие со временем возмущения скорости и / или давления. Дано 

аналитическое описание неустойчивых состояний потока жидкости в открытых об-

ластях различной геометрической формы, таких как комбинация вихревого цилин-

дра с непроницаемой поверхностью, непроницаемый цилиндр, зазор между цилин-

драми. Открытыми участками границ служат проницаемые сферические сегменты, 

расположенные на торцах цилиндра. 
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Abstract. This paper examines the linearized Euler equations determining the axisymmet-

ric swirling flow of an ideal incompressible fluid. The main flow is characterized by  

a single nontrivial (azimuthal) velocity component that depends arbitrarily on the radial 

cylindrical coordinate. Based on a perturbed steady-state solution, explicit expressions  

for vortex helices and spiral-shaped stream surfaces are obtained. Exact solutions are con-

structed that incorporate arbitrary functions in their structure and describe perturbations  

of velocity and/or pressure growing linearly in time. A hydrodynamic interpretation of 
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these solutions is given in terms of the fluid flow through a given domain. An analytical 

description is provided for the unstable fluid states in the regions with open boundary seg-

ments. Three geometric configurations of such domains are analyzed. The first is the flow 

outside a vortex cylinder attached to an impermeable surface with a non-monotonic profile 

in the radial cylindrical coordinate. The second is the flow inside an impermeable cylinder 

with movable permeable spherical segments at its ends; the boundary conditions on these 

segments represent a coupling between velocity and pressure perturbations and the velocity 

of the segment. The third configuration is the flow in a gap between coaxial cylinders with 

movable permeable segments located at their ends. The effect of the pressure gradient  

on the spatial structure of the vortex field is studied. The effect of geometric parameters  

of the open regions on the flow properties is determined. 
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For citation: Shablovskiy, O.N. (2025) Unstable perturbations in a swirling flow of an 

ideal incompressible fluid in the regions with open boundaries. Vestnik Tomskogo gosu-

darstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal  

of Mathematics and Mechanics. 98. pp. 166–181. doi: 10.17223/19988621/98/14 
 

 

Введение 

 

В данной статье на основе уравнений Эйлера для идеальной жидкости рассмат-

риваются открытые закрученные течения, в которых неустойчивые возмущения 

скорости и / или давления являются линейными функциями времени. Укажем 

краткий перечень научных публикаций, относящихся к теме нашего исследования. 

История вопроса и основные результаты изучения фундаментальных свойств вих-

ревого движения идеальной однородной несжимаемой жидкости изложены в кни-

гах [1–3]. В работах [4–6] проанализированы различные типы неустойчивости и их 

влияние на поведение решений двумерных и трехмерных уравнений Эйлера. Ста-

тья [7] содержит анализ решений уравнений Эйлера со специальной геометриче-

ской структурой; в частности, здесь представлены геликоидальные решения. Основ-

ные сведения о состоянии экспериментальных исследований свойств закрученных 

течений (спиралевидные вихревые структуры, радиальный градиент давления) 

имеются в [8, 9]. Задача протекания нестационарного потока жидкости через об-

ласть с открытыми участками границ [10–12] занимает важное место в современ-

ной математической гидродинамике. Анализ устойчивости открытых невязких те-

чений при различных вариантах постановки начально-краевой задачи представлен 

в [13–17]. Отметим, что в этих работах придается большое значение геометриче-

ским формам изучаемых областей: каналам и линиям тока на плоскости, зазорам 

между цилиндрами и сферами и др. 

Ясно, что для дальнейшего изучения обсуждаемых задач полезно иметь в явном 

виде примеры физически содержательных неустойчивых течений, обладающих 

нетривиальными свойствами. 

Предметом данного исследования являются уравнения Эйлера, линеаризован-

ные на точном стационарном решении, представляющем собой произвольную ана-

литическую зависимость азимутальной скорости от радиальной цилиндрической 

координаты. 

Цель работы – построить точные частные решения линеаризованных уравне-

ний Эйлера и указать неустойчивые закрученные течения в областях, имеющих 

проницаемые участки границ. 
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Исходные уравнения 

 

В сферической системе координат (r, θ, φ) нестационарное осесимметричное 

(∂/∂φ ≡ 0) движение идеальной несжимаемой жидкости определяется уравнениями 
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Здесь r – радиальная сферическая координата; θ – полярный угол; φ – азимуталь-

ный угол; v(vr, vθ, vφ) – вектор скорости жидкости; t – время; ρ – плотность; p – 

давление. Вектор вихря скорости равен ( ) vω rot21= . Связь с цилиндрической 

системой координат дается формулами = sinr  и = cosrz , которые опреде-

ляют радиальную цилиндрическую и осевую координаты. 

Эта система уравнений движения имеет точное стационарное решение 

 vr ≡ 0,  vθ ≡ 0, ( )= Ηv , ( )=p , ( )2Η d d=     , (1) 

где вращательная скорость ( )= Ηv  – произвольная дифференцируемая функ-

ция, ограниченная в изучаемой области. В дальнейшем при рассмотрении отдель-

ных течений применяем частные зависимости ( )Η . Например: 

1) полубесконечный интервал  )0,  , ( ) 00 ==Η , ( ) 0=→Η ,  

 ( )= 11 exp aHΗ ; H1, a1 – const; H1 > 0, a1 < 0; (2) 

2) конечный интервал 
( ) ( )1 2

,   
 

; ( ) ( )  210 , ( ) 00 ==Η . 

Линеаризацию исходных уравнений выполняем, применяя малые добавки f, g, 

h, b к основному решению (1): 

 vr = f (r, θ, t), vθ = g(r, θ, t), ( ) ( )trhΗv ,,+= , ( ) ( )trbp ,,+= . (3) 

В результате стандартных преобразований имеем линеаризованную систему 

уравнений 
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Точка над символом функции означает дифференцирование d/dζ. В последующем 

изложении считаем, что произвольные функции, содержащиеся в решениях си-

стемы (4), (5), являются ограниченными и дифференцируемыми. Далее нам пона-

добится уравнение 

 0grad = vSv , (6) 

определяющее непротекаемую поверхность Sv ( r , θ , t ) =0 , а также уравнение 
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 0grad = Sω , (7) 

определяющее вихревую поверхность Sω (r , θ , t ) =0 . Термин «винтовое движение» 

применяем в тех случаях, когда вектор скорости параллелен вектору вихря скоро-

сти, 0= vω . 

 

Стационарное решение 
 

В (4), (5) полагаем 0 t , 0+ HH . Здесь мы оставляем в стороне случай 

0=+ HH . Стационарное возмущенное течение определяется зависимостями (3), 

в которых 

 ( ) = cosAf , ( ) −= sinAg , ( ) ( )+= hΗv , ( )= bHh 2 ,  ) ,0 , (8) 

причем A(ζ), b(ζ), H(ζ) – произвольные функции, которые должны удовлетворять 

условиям: ζ=0, H=0, h=0; ζ→∞, A→0, b→0, H→0, h→0. Завихренность течения 

(8) определяется следующими выражениями: 

( ) +



= vvr 

2

cos
, ( ) +



−
= vv

2

sin
, 2A−= . 

Значит, в цилиндрических координатах ( )= Avz , ( ) ( )+=  2vvz  , а ζ – ра-

диальные компоненты скорости и завихренности нулевые: vζ ≡0, ωζ ≡ 0. Следова-

тельно, ζ = const > 0 – это семейство непротекаемых вихревых цилиндров. Каждый 

такой цилиндр – прямой и круговой, а ζ есть радиус направляющей окружности. 

На поверхности цилиндра ζ = ζS движение является винтовым, если выполнено 

условие 

 ζ=ζS, ( )  AvvvA   −=+ . (9) 

Укажем два интересных варианта течения вида (8). 

Примем связь 

 ( ) ( ) ( )= vAAvz , constA , (10) 

в которой A  в соответствии с процедурой линеаризации есть величина 1-го по-

рядка малости, а в остальном произвольная. Течение (8), (10) содержит непротека-

емую спиралевидную поверхность 

 ( ) ( ) 0ctg,, =−+ ASv , (11) 

геометрические свойства которой зависят от выбора произвольной функции Φ(ζ). 

Выражение (11) есть результат интегрирования уравнения (6). Именно связь (10) 

дает возможность записать (11) в конечной форме. Плоскость θ=π /2 будем назы-

вать условно плоскостью экватора. 

Если ( ) = 1 , const1  , 0A , то 

 ( ) 1ctg −= Av . (12) 

В северной части пространства нужно взять  2,0  , 01  , φ≥0; в южной 

части пространства   ,2 , 01  , φ≤0. На плоскости экватора имеем спи-

раль Архимеда, ( ) 12 == Av . 

Если ( ) ( )= 21 ln ; Φ1, Φ2 – const; 0A , 02  , то 

 ( ) ( ) 12 ctgexp1 −= Av . (13) 
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В северной части пространства 01  , φ≥0, ( ) 0,0 →=v ; в южной части про-

странства 01  , φ≤0, ( ) 0, →=v . На плоскости экватора имеем логариф-

мическую спираль, ( ) ( ) ( )12 exp12 == Av . Непротекаемую спираль (13) 

можно поместить внутри непротекаемого вихревого цилиндра ( )2
1 1 = v ,  

а при 1
v=  задать, например, постоянное давление жидкости. 

Если ( ) ( )= 21 tg ; Φ1, Φ2 – const; 0A , 02  , то 

 ( ) ( ) 12 ctgarctg1 −= Av . (14) 

В северной части пространства 01  , φ≥0; в южной части пространства 1 0,   

φ≤0. На плоскости экватора имеем спираль, которая по мере роста аргумента 

01 A

 

асимптотически приближается изнутри к окружности радиуса ( )22 .   

Непротекаемую спираль (14) можно поместить внутри непротекаемого вихревого 

цилиндра ( ) 2
1 2= v , ( ) const1 == vp . 

Итак, течение (8), удовлетворяющее связи vz ↔vφ (10), содержит в своей струк-

туре спиралевидную поверхность тока (11). Условие винтового движения (9) с уче-

том (10) выглядит так: 

 S= , 0=++  vvAA  . (15) 

Приведем частный пример винтового движения. Пусть основное течение опре-

деляется формулой (2), и при этом h=δ1H, где |δ1| – малая величина 1-го порядка. 

Тогда  

 ( ) ( ) ( )  ( )2
111

2
11 212exp12 aaaHb +−= ,  ) ,0 . (16) 

В итоге получаем ( )1 1exp ,A A a=    ( )1 1 11 ,A A H= +  ( ) ( )2

1 12 1 0,S SA a a = − +  +    

и значение ( )Sa − 1  должно располагаться в малой левой окрестности 2, а именно: 

( )2
11 2 =+ Sa . На поверхности цилиндра S=  течение является винтовым. 

Теперь в решении (8) примем связь =  sinB , или, что то же самое, 

 ( ) ( ) const+=  AvvB  , (17) 

где B1  – малая величина 1-го порядка. После интегрирования уравнения (7) по-

лучаем спиралевидную вихревую поверхность 

 ( ) ( ) 0ctg,, =++  BS , (18) 

где Φω(ζ) – произвольная функция. Выражения (11) и (18) имеют одинаковую ана-

литическую форму, поэтому, применяя переобозначения ζv →ζω, Φ→Φω, 

( ) −→ BA , находим спиралевидные вихревые поверхности = , геометриче-

ские свойства которых аналогичны (12)–(14). Например, вихревую поверхность 

вида (14) можем поместить внутри непротекаемого вихревого цилиндра 

( )2
1 2=  , являющегося изобарической поверхностью. Итак, течение (8), 

удовлетворяющее связи ωθ ↔ωφ (17), содержит в своей структуре спиралевидную 

поверхность (18). Случай, когда в потоке жидкости выполнены сразу две связи (10) 

и (17), неинтересен. Условие винтового движения (9) с учетом (17) выглядит так: 

 S= , 0=+ vBA . (19) 
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Приведем частный пример винтового движения. Берем по-прежнему (см.: (16)) 

течение (2) и h=δ1H. Тогда (17) дает ( ) ( )( )( ) ( )1

1 1 1 11 expA H B a a−

 = +   +  , т.е. 

здесь A(ζ = 0) ≠ 0, A(ζ → ∞) = 0. Течение винтовое на поверхности цилиндра ζ=ζS, 

для которого ( ) ( )
1

2 2

1 11Sa B
−

−  = + =   . 

Подведем итог. Для решения (8), (2), (16) верны следующие утверждения. Те-

чение, удовлетворяющее связи vz ↔vφ (10), является винтовым при том значении  

ζ = ζS, которое есть корень уравнения (15), имеющего вид связи ωθ ↔ωφ (17). Тече-

ние, удовлетворяющее связи ωθ ↔ωφ, является винтовым при том значении ζ = ζS, 

которое есть корень уравнения (19), имеющего вид связи vz ↔vφ. 

 

Растущее возмущение давления 
 

Простые аналитические преобразования позволяют построить следующее точ-

ное решение системы уравнений (4), (5): 

 ( )0b t t C= + , ( ) ( )0 2h t t C H= +   , 0 const 0t   , (20) 

−−= ctg1 ghf , ( )= 21 rGh , ( )HHGHC +=  , ( )GG
r

D
g +




−= 4

2

cos2

. 

Произвольные функции С(ζ) и D(ζ) нужно задавать так, чтобы иметь при t=0 фи-

зически содержательное решение, ограниченное во всей области течения. Функ-

ция G(ζ) применяется для компактности записи. Решение (20) дает равную нулю 

ζ-радиальную компоненту завихренности, ωζ ≡0, поэтому здесь ζ = const > 0 есть 

семейство вихревых цилиндров. 

Приведем пример. Основное течение имеет вид (2). Взяв D(ζ) ≡ 0, 

( ) ( )1 1 22 exp ,C С a a=  +    a2 < 2a1 < 0, получим ( ) ( )2

1 1 1 212 exp ,h rС H a=    a21 = a2 – 2a1. 

Здесь С1 – постоянная малая величина 1-го порядка. Поведение скорости опреде-

ляется формулами ( )1 sinv h v = −  =  , 

 ( ) ( ) ( )1

0 1 2 1

1

2 exp
2

C
h t t a a a

H


= + +  −   

, ( )1

21 212

1

1 exp
2

z

zC
v a a

H

 
= +  
  

. (21) 

Вращательная компонента завихренности выглядит так: 

( )( ) ( )2

1 21 1 21 214 3 expzC a H a a = −  +   . 

Течение жидкости происходит вне вихревого цилиндра ζ=ζω и ограничено непро-

текаемыми поверхностями z=± z v (ζ): 

 ( ) ( )2

1 21expvz z a=  −  , z1 – const. (22) 

Область течения:  vv zzz ,− , ζ ≥ ζω > 0, и тогда 

 ( ) 






 
+


== 2122

1

11

2
1 a

H

Cz
zzv vz . (23) 

Половина высоты вихревого цилиндра равна ( )== vc zz . Экстремум функ-

ции (22) достигается при ( )212 az −== , т.е. именно там, где ( ) 0== zzv , 

см. (21) (рис. 1). Вместе с тем имеем ( ) 0==  , ( )213 a−= ,  z0 , 
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т.е. по мере удаления от оси z сначала меняет знак скорость vz, а затем ωφ. Вихревой 

цилиндр ( )12 a−=  определяем из граничного условия ( ) 0== h , см. (21). 

Возмущение h и градиент возмущения давления ∂b/∂ζ сохраняют постоянными 

свои знаки во всей области течения. Если 3a1 ≥a2, то z . Основной интерес 

представляет случай, когда нулевая скорость ( ) 0== zzv  присутствует в дан-

ном потоке жидкости: z 0 , 3a1 <a2 <2a1 (см. рис. 1). 

 

 

Рис. 1. Границы области течения (20)–(22): ζ = ζω – вихревой цилиндр; 

( )vz z=    – непроницаемые поверхности; ( )m v zz z=   

Fig. 1. Boundaries of the flow region (20) – (22): ζ = ζω is the vortex cylinder; 

( )vz z=    are the impermeable surfaces; and ( )m v zz z=    

 

Структура течения зависит от знака константы С1 и симметрична по отноше-

нию к плоскости z=0, см. (21), (23). При С1 > 0 вихревой цилиндр ζ = ζω – это сток 

конечных размеров, т.е.

 

( ) 00 ==zvz , vζ<0 во всей области течения, а для 

 z  ,  имеем: если z > 0, то vz > 0; если z < 0, то vz < 0, рис. 2, а. При С1 < 0 

вихревой цилиндр ζ = ζω – это источник конечных размеров, т.е.

 

( ) 00 ==zvz ,  

vζ > 0 во всей области течения, а для  z  ,  имеем: если z > 0, то vz < 0; если 

z < 0, то vz > 0, рис. 2, b. На рис. 2 ось z идет вдоль образующей вихревого цилиндра. 

Для источника и стока гладкий выступ на непроницаемой границе (22) является 

причиной изменения направления вектора скорости v(vζ, vφ, vz). Пример течения, 

содержащего излом непроницаемой границы, дан в [18]. 

 

Растущее возмущение скорости 

 

Система уравнений (4), (5) имеет следующее точное решение: 

( )
( )zf

r

tt
f ,1

0 
+

= , 
( )

( )
+

= 1
0 g

r

tt
g , 011 =


+

z
gf , ( ) ( )


+=

z
gbb 10 , 

 







=

b

H
h

2
, t0 ≡ const > 0, (24) 

где b0(ζ), g1(ζ) – произвольные функции. Формулы (24) определяют неустойчивое 

начальное (t=0) состояние жидкости. Отметим, что в данном случае ζ=const есть 
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семейство стационарных поверхностей тока; z – компонента градиента давления 

равна 

 ( ) ( )11 p z g   =   , (25) 

а также выполнено соотношение ctgrv v= −  . Радиальная цилиндрическая ком-

понента завихренности не зависит от времени: 

 1

4

gd

H d


 
 = −  

  
. (26) 

Цилиндр ζ=  ζ1 является вихревой поверхностью, если ζ1 >0 есть корень уравнения 

( )1 1g g=  . 

 

  
   a                                                                            b 

Рис. 2. Схема расположения компонентов vz и vζ вектора скорости течения (20)–(22).  

Направления этих компонент отмечены стрелками, параллельными осям z и ζ  

соответственно: a – сток; b – источник; ( )1

1 0, mz z  

Fig. 2. Spatial position of the velocity vector components vz and vζ for the flow (20) – (22).  

The directions of these components are indicated by arrows parallel to z- and ζ-axes, 

 respectively: (a) discharge; (b) source; ( )1

1 0, mz z  

 

Далее нам понадобятся формулы 

 ( )
( )1

0z

g
v t t

−
= +


, 1

2

gz
h

H

  
=  

  
, (27) 

( ) hHz +





=

1
2 , ( ) 1

02
g

t t

 
 = +  

  
,  

( ) hHr
rr

+



−=

1
2 . 

В случае (24) интеграл уравнения (7) имеет вид: 

 ( )
( )

( )2

0

, , const 0
2

H
S t d

t t


 
    + + =

+ . (28) 
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Следовательно, вихревую поверхность можно представить в явной либо неявной 

форме как ( ) 0tt +=  , и, независимо от вида основного течения H(ζ) > 0, 

имеем 

 0  , 0  t . (29) 

Приведем примеры. Рассмотрим течение внутри цилиндрической поверхности 

тока ζ=ζv, 0<ζv <∞: 

 = 1HH , 0const1 H ,  v ,0 , (30) 

( ) 00 b , ( ) ( )= 3
21

11 exp agg , 03 a , 

где 
1
1g  – постоянная малая величина 1-го порядка. Интеграл (28) дает логариф-

мическую спираль 

( )







+

−
=

012
exp

ttH
v , φ≥0, H1dφ>0, ( ) v== 0 , 

которая обладает свойствами (29): она обматывается вокруг оси ζ=0, неограни-

ченно приближаясь к ней. В начальном состоянии (t=0) наблюдается стремление 

к расширению вихревой поверхности, находящейся внутри цилиндра ζ=ζv. На оси 

цилиндра жидкость неподвижна. Структура решения (24) позволяет поставить 

внутри цилиндра ζ=ζv проницаемые границы области – подвижные сферические 

сегменты: ( ) ( )0ttvtrr SS +== , ( )00 = trSv ,  S ,0

 

– северная область, 

и  − ,S  – южная область, где vS >0 – постоянная скорость перемещения 

поверхности сегмента, SvS r=sin , рис. 3. Радиальная сферическая скорость 

протекания через сегменты равна ( ) ( ) ( )−== sinexpcossin 3
21

1 SSSSr ravrgrrv . 

 

 

Рис. 3. Схема расположения компонентов vr и vθ вектора скорости течения (30)–(32): 

ζ = ζv – непроницаемый цилиндр; r = rS – проницаемый сферический сегмент 

Fig. 3. Spatial position of velocity vector components vr and vθ for the flow (30)–(32): 

ζ = ζv is the impermeable cylinder; r = rS is the permeable spherical segment 
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Согласно (24), при b0(ζ)≡0 полученное решение удовлетворяет граничному 

условию 

 r= rS, 0=+ Srvvb , (31) 

которое представляет собой связь между возмущением давления b(r= rS) и скоро-

стью протекания vr (r= rS). 

Возьмем для определенности 01
1 g . Тогда в северной области течения 

vr (r= rS)>0, в южной области vr (r= rS)<0. Ясно, что  

( ) ( ) ( ) SSSSSz gvrrrv −== 1 , SvS = sinsin , 1
1sgnsgn gvz −= . 

Схема течения показана на рис. 3. Формула 

 ( )
SrrS

S
S

z

p

d

d

v

r
rr

=

 





















==

2
 (32) 

дает корреляцию между вращательной компонентой завихренности и ζ-радиаль-

ной неоднородностью продольного градиента давления. Громоздкая запись θ-ком-

поненты завихренности здесь не приводится; отметим только, что для ωθ(r= rS) ос-

новным элементом аналитической структуры тоже является производная 

(d/dζ)(g1/ζ), см. (25)–(27). 

Итак, для данного течения (30) формирование вихревого поля обусловлено  

зависимостью ∂p/∂z от ζ-радиальной координаты. Эта зависимость немонотонная: 

она имеет минимум при ( )3
1 1 a−= , 03

1
1 ag . 

 

Течение между двумя коаксиальными цилиндрами 
 

На основе решения (24), ( ) 00 b  рассмотрим течение жидкости между коак-

сиальными цилиндрами: 

 ei  , , ( )00 = trSei , Si r=1sin , Se r=2sin . 

Внутри цилиндрического зазора перемещаются проницаемые сферические сег-

менты, из которых вырезана центральная часть, соответствующая внутреннему 

цилиндру и заключающая в себе конечную окрестность оси z: ( ) ( )0ttvtr SS += , 

0Sv ,  21,

 

– северная область, и  12 , −−  – южная область,  

рис. 4. На поверхности r=rS выполнено граничное условие (31). Радиальная сфе-

рическая скорость протекания жидкости через сегменты зависит от выбора функ-

ции g1(ζ): ( ) ( ) ( ) −== ctg1 1 SSSr gvrrv , = sinSS r . Далее нижними индек-

сами i, e отмечаем параметры течения на внутреннем и внешнем цилиндрах соот-

ветственно. 

Примем связь между функциями H(ζ) и g1(ζ): 

 


=











g

Hg

d

d 2
12 2

, (33) 

где g1 – постоянная малая величина 1-го порядка. Изучим движение, для кото-

рого 

( )( )
( ) e

e
e

m

m
HH

+

+
=





1

1
,   ( ) =  ctggHh , 
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 hHb = 2 ,    ( ) ee mHH +=  1 , (34) 

( )

( )





























−+−

−
=





H
e

i
Hi

Hi

mmg

mH
g

11

12 22

1 ,     ei  , ,  11, − . 

 

 

Рис. 4. Геометрические параметры области течения (34) в зазоре между непроницаемыми 

коаксиальными цилиндрами: ζ = ζi и ζ = ζe – радиусы внутреннего и внешнего цилиндров; 

r = rS – проницаемый сферический сегмент 

Fig. 4. Geometric parameters of the flow domain (34) in a gap between impermeable coaxial  

cylinders: ζ = ζi and ζ = ζe are the radii of internal and external cylinders, respectively; r  =  rS  

is the permeable spherical segment 

 

Применяем обозначения: 

i

e
H

H

H
m = , 

i

e

h

h
m = , 

( )
1

1
1

−

−
=+ 

H

ie

m
m . 

При анализе решения (34) полагаем H(ζ)>0 и фиксируем исходные положитель-

ные параметры ζi, ζe, He, mH. Отметим, что ( ) ( )izezH vvm = , 

( ) ( )SSSSz vgHHrrrv −== 2 , ( )SS HH == , = sinSS r ,  21, . Со-

гласно (6), течению (34) соответствует непротекаемая поверхность 

 ( ) 0=− YSv , ( ) ( ) ( )2

02 1 sin 2 2sinY H t t g 
 = + + +  
 

, (35) 

где Φ(Y) – произвольная функция, область значений которой находится внутри  

интервала  ei  , . Например, ( ) Yiei 2
2

1 sin −+=

 

либо 

( ) Yiei 2
2

1 th −+= , где Φ1, Φ2 – const, 0<Φ1 ≤1. Именно связь (33) поз-

воляет получить в явном виде спираль (35). Из (25), (33) следует, что 

 sgn sgn
d p

g
d z



 
=  

  
. (36) 
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Существуют два режима движения (34), зависящие от поведения основного  

течения, а именно от знака производной dH/dζ. Режим I: если mH >1,  

то ( )eim  , ( ) 01 +  em , ( ) zvzpg sgnsgnsgn −== . Здесь 0m , 

если ( )ieHm 1 ; 01 − m , если ( ) 1 ieHm ; 0=m , если 

( )ieHm = . 

Режим II: если 10  Hm , то ( )eim  0 , ( ) 01 +  em , 

( ) zvzpg sgnsgnsgn =−= .  

Итак, согласно (36), gsgn  определяет характер ζ-радиальной неоднородности 

продольного градиента давления ∂p/∂z. Значение mH =1 является пороговым между 

режимами I и II. Для каждого режима формальное изменение знака константы g  

влечет за собой формальное изменение направления течения через проницаемые 

сегменты. Для выяснения физического характера различий между режимами I и II 

будем сопоставлять течения с одинаковыми ( )zp sgn . Возьмем для определен-

ности течения, в которых ∂p/∂z<0. В режиме I эта ситуация наблюдается при 

0g , и здесь |∂p/∂z| растет с ростом ζ. В режиме II имеем 0g , и здесь |∂p/∂z| 

убывает с ростом ζ. Такой же результат справедлив и для ∂p/∂z>0, т.е. после фор-

мального изменения направления продольного течения. В качественном отношении 

поведение направлений векторов vr и vθ одинаковое для обоих режимов (см. рис. 4). 

Вывод: для данного течения 

( ) 













=


=−

z

p

d

d

d

dH
mH sgnsgn1sgn . 

В экваториальной плоскости z-компонента завихренности не зависит от g : 

 ( ) 00 ==zh , ( ) ( )( ) ( )( )
2

0 2 2 1z e ez H m m  
  = = +   +  
 

. (37) 

Обозначим ( ) ( ) ( ) 0== zdd zz . Для режима I имеем ( ) 00 = zz , и здесь 

существует еще один порог: 0=m . Если 0m , то 0 z ; если ( )0,1−m , 

то 0 z . 

Вывод: для режима I ( )( ) zieHm =− sgnsgn . 

Для режима II завихренность ( )0= zz  как функция аргумента ζ может быть 

знакопеременной и немонотонной. Действительно, ( ) 00 = zz , если 

( ) ( ) 2− mie , см. (37). Нулевое значение ( ) 00 == zz  получаем при 

( )−== me20 , и перемена знака происходит во внутренних точках 

( )ei  ,0 , когда 

 ( ) ( )iem −  22 . (38) 

Кроме того, e=0

 

при ( ) 2=− m , и тогда ( ) 00 = zz  для  )ei  , . Если 

( ) ( )iem =−  2 , то i=0 , и тогда ( ) 00 = zz  для ( ei  , . Если 

( ) ( )iem −  2 , то ( ) 00 = zz  на всем интервале  ei  , . 

Вывод: по отношению к перемене знака завихренности ( )0= zz  параметр 

( )− m  имеет два пороговых значения, ( ) 2=− m и ( ) iem =−  2  (рис. 5). 
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⊝ ⊝→⊕ ⊕ 

1 (−m*) 0 2 ζe / ζi 2ζe / ζi 

 
Рис. 5. Режим ( )0,1Hm  . Интервалы значений параметра ( )m− , для которых ( )0z z = , 

см. (37), отрицательная [⊝], знакопеременная [⊝→⊕] и положительная [⊕] 

Fig. 5. Flow regime at ( )0,1Hm  . Intervals with the values of parameter ( )m−  for which,  

according to (37), ( )0z z =  is negative [⊝], alternating [⊝→⊕], and positive [⊕] 

 

Функция ( ) z  характеризует ζ-радиальную неоднородность завихренности 

( )0= zz . Имеем 0 z , если ( ) ( )iem −  3 . Нулевое значение 

( ) 01 == z  получаем при ( )−== me31 ; здесь ( )ei  ,1 , если 

 ( ) ( )iem −  33 . (39) 

Кроме того, e=1

 

при ( ) 3=− m , и тогда 0 z  для  )ei  , . Если 

( ) ( )iem =−  3 , то i=1 , и тогда 0 z  для ( ei  , . Если 

( ) ( ) 3− mie , то 0 z  на всем интервале  ei  , . Функция ( ) z   

в точке 1=  достигает максимум. 

Вывод: по отношению к перемене знака Ωz(ζ), т.е. по отношению к переходу 

«монотонность–немонотонность» функции ( )0= zz , параметр ( )− m  имеет два 

пороговых значения: ( ) 3=− m  и ( ) iem =−  3 . Этот результат аналогичен 

тому, что показан на рис. 5 для ( )0= zz . 

Итак, отношение радиусов цилиндров ζ e / ζ i  предопределяет свойства течения, 

потому что именно эта величина указывает границы интервалов значений m , для 

которых наблюдаются знакопостоянные и знакопеременные, монотонные и немо-

нотонные зависимости ( )0= zz  аргумента ζ. Например, условия (38) и (39) сов-

местимы друг с другом, если ( ) ( )iem −  23 . 

 

Заключение 
 

Решение (1) содержит произвольную зависимость vφ = H(ζ), поэтому конкрет-

ный выбор основного течения дает возможность рассматривать разнообразные  

варианты поведения возмущенного движения. Для стационарного решения (8) 

определены закономерности появления спиралевидных вихревых поверхностей. 

Решение (20) характеризует течение, обусловленное растущим со временем возму-

щением давления. Гидродинамическая интерпретация: течение жидкости вне вихре-

вого цилиндра, к которому пристыкована непроницаемая поверхность (см. рис. 1). 

Решение (24) определяет течение, обусловленное растущим со временем возмуще-

нием скорости. Гидродинамическая интерпретация:  

1) течение внутри цилиндрической поверхности тока; на торцах этого цилин-

дра находятся подвижные проницаемые сферические сегменты см. (рис. 3), и на 

поверхностях сегментов выполнено условие (31);  

2) течение в зазоре между коаксиальными цилиндрами (см. рис. 4).  
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