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ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ НЕОДНОРОДНОЙ СИММЕТРИЧНОЙ 
СТРУНЫ ПО СПЕКТРУ ЕЕ ЧАСТОТ

(Представлено академиком Л. Н. Колмогоровым 24 XI 1950)

1. Рассмотрим струну S, натянутую единичной силой между точ­
ками оси абсцисс х = — 1 и х = 1. Пусть а(х) (— 1 <х^ 1, <т(—-1) = 
= 0) — масса отрезка струны от точки — 1 до точки х включительно.

Как известно (4), квадраты Д = р\ (6 = 0, 1, 2,...) частот ее сво­
бодных гармонических колебаний суть характеристические числа 
нагруженного интегрального уравнения:

1

9 (х) = X $ К(х, s) 9 (s) da (s), (1)
—1

где ядро
K(s, х) = К(х, s) = 4/2(1 + х) (1—s) при x<s 

есть функция влияния струны.
У неубывающей функции а(х) существует почти всюду производ­

ная а'(х). Если функция ст(х) абсолютно непрерывна, то уравнение (1) 
эквивалентно дифференциальной системе:

9" (х) + Хр (х) 9 (х) = 0, 9 (± 1) = 0> (2)
где р (х) — а' (х) (почти всюду).

Мы будем рассматривать общий случай уравнения (1), предпола- 
* гая, что функция а (х) может состоять из абсолютно непрерывной 

части, сингулярной части и функции чистых скачков (отвечающей 
сосредоточенным массам на струне).

Теорема 1. Для частот АСА • • • струны с любой 
функцией распределения масс <т(х) имеет место асимптотическая 
формула

1

lim — = (х) i/x. (3)
п —» со Рп J

—1

Для случая функции а(х), имеющей всюду положительную доста­
точно гладкую производную, формула (3) известна еще из исследова­
ний Лиувилля (2). В нашем общем случае она показывает, что предел 
отношения п / рп вполне определяется абсолютно непрерывной частью 
функции ®(х) и, следовательно, никак не зависит от ее сингулярной 
части и функции скачков.

При доказательстве (3) мы использовали существенно результаты 
наших статей (3,4).

Из тех же статей (3,4) легко вытекает, что существование конеч­
ного предела для отношения п]рп ни в какой мере не является доста- 
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точным условием того, чтобы последовательность (О <С) Ро Рі <2 
была спектром частот некоторой струны S.

2. Струну S будем называть симметричной, если

о (1) — а (х + 0) = о (— х — 0) — g (— 1) (— 1 < х — 1).

Теорема 2. Для того чтобы последовательность положитель­
ных чисел p0<ZPi<i Рг< - • ■ была спектром частот некоторой сим­
метричной струны S, необходимо и достаточно, чтобы абсолютно 
сходилось произведение

Л W - п

п=0

= « = 0, 1, 2...... )
\ п /

и чтобы

S ^пд'(М (4).

Неравенство (4) имеет простой механический смысл: его левая 
часть, будучи удвоенной, дает массу всей струны S (при условии, что 
струна не несет „лишних0 масс — масс, сосредоточенных на концах).

Нетрудно также показать, что условие (4) эквивалентно условию

“ 1 •
У - ------- <оо.

Докажем сперва достаточность условия (4).
Покажем

я—1 , . , П^(xt-nO-v. . £-W-n 1-vr). 

й=0 k—\ 4 z« i /

2л—1
І.(Х)-П(‘-Д) И=1,2,...).

*=o v k/

Как известно (J,1), отношение En / Dn разлагается в непрерывную 
дробь Стильтьеса:

£.(-х)/О.нм = й"> + ;4Д + гД-! +
1 п п-—1

1 I
1 <П) ’іЧП2і^ +‘” + |т^

где все числа № и (£ = 1, 2,..., л) положительны.
Рассмотрим симметричную струну (нить) S^n\ которая несет п пар 

бусинок масс тг, т^,---, тп, расположенных от середины нити соот­
ветственно на расстояниях 1%\ д ....... д-„ д_ ( = 1__________ 1(пД

Как известно (V,1), квадратами частот нити натянутой 
ной силой, будут числа J

Обозначим через art(x) (—1 <Дг ' " ь
нити от точки —1 до точки х. 1, <М—1) = 0) массу

единич-

отрезка
Можно показать, что

2 (1) — т\ 1 + т" -р • • • 4- т^ = — v_____ 1 |
ft=0 (Х2й) (\k)
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Следовательно, при выполнении условия (4) неубывающие функции 
<тя(х) (n = 1, 2,...) равномерно ограничены. По теореме Хелли, всегда 
найдется неубывающая функция а(х), к которой в существенном бу­
дет сходиться некоторая подпоследовательность аПч (х) (v = l,2,...).

Нетрудно убедиться в том, что струна S с предельным распреде­
лением масс а(х) будет иметь заданный спектр {]/%}".

Для доказательства необходимости условия (4) введем в рассмот­
рение струну S*, получающуюся из струны S (без „лишних" масс на 
концах)'путем скрепления ее концов с идеально гладкими колечками 
„нулевого" радиуса, свободно скользящими по прямым х =+ 1 пло­
скости колебаний ХУ.

Пусть Хо=О<Л1<Х2<\.. — последойательность квадратов частот 
струны S*. Положим

£«=П ('-«• 

*=оч *=1 4 1/

оо оо
°' т - лад (1 . р (Ч = п (1 - ,

где 27И— масса всей струны S.
Оказывается, имеют место абсолютно сходящиеся разложения:

D= _ . v 1 1
(Х) ~ ^2« (^2*) Х ’«--О

«W = 1 . х v 1_________ 1
£ (Х) Х2А—1Д' (Х2*—1) *2*—1— Х *

В частности, из первого равенства заключаем, что величина левой 
части (4) равна М «оо).

Между прочим,

(X) — D' (Х)£(Х) = 1.

3. Отметим некоторые следствия теоремы 2.
Пусть «}“ —спектр какой-либо симметричной струны, а {р'п}о— 

возрастающая последовательность положительных чисел такая, что 
при некотором целом А>0 выполняется равенствоp'n+h = рп для всех 
п^>«0. Тогда «}” также будет спектром некоторой струны.

С другой стороны, если, например, из спектра рп = с (п + I)2 
(п = 0, 1,2,...) однородной струны выбросить хотя бы одну частоту, 
то оставшиеся частоты уже не составят спектра никакой другой сим­
метричной струны.

4. Приложим в середине струны сосредоточенную пульсирующую 
силу F=sin|^X£. Тогда удвоенная амплитуда вынужденного колеба­
ния под действием этой силы будет £ (X) / £> (X). Оказывается,

где р*>0 (& = 0, 1,...), а у>0. Величина у>0, между прочим, тогда 
и только тогда, когда некоторый отрезок (—е, е) струны S не несет 
масс (а (е) — а (— е) = 0).
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Составим эрмитово-положительную функцию (8):

^(0 = 2 Т” cos (—00 < < оо).
J.1 £

При функция F (0) — F (t) дает удвоенное смещение середи­
ны О струны, вызванное за время ^действием постоянной единичной 
силы, внезапно приложенной в точке О к первоначально покоившейся 
струне.

Обозначим через р(^) (0<^<;оо) центральную функцию 
для F(t) (ее определение см. в (8)).

Введем, кроме того, в рассмотрение функцию

т(х) = 2 (0<х<1).

Точку х0 назовем точкой роста слева т(х), если
т(х)<т(х0) для любого х<х0.

Теорема 3. Если х — точка роста слева функции т(х), то 
= 1 -х.

Из теоремы 3 следует, что „плотность" а (х) распределения масс 
на симметричной струне однозначно определяется спектром струны.

Применение этого результата к дифференциальной системе (2) с 
неотрицательной и интегрируемой функцией р (х) = р (—х) (—1<х< 1) 
очевидно. Оно дает полное решение задачи однозначности, изучав­
шейся Боргом (9). Можно показать, что в точках роста (слева) функ­
ции т(х) однозначно определяется и сама функция о(х). В частности, 
функция <т (х) вполне определяется, если почти всюду 
с’(х)=£0. Повидимому, функция <т(х) симметричной струны всегда 
однозначно определяется спектром частот струны. Нами показано, что 
это утверждение верно, если оно верно для специального случая, 
когда а' (х) = 0 (почти всюду).

Поступило
21 XI 1950
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