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ПРИСТЕНОЧНОЕ СКОЛЬЖЕНИЕ ЖИДКОСТИ И НЕЛИНЕЙНЫЕ
СВОЙСТВА ВИХРЯ СКОРОСТИ В ДВУХМЕРНОМ ПОТОКЕ

О. Н. Шабловский

1. Уравнения динамики жидкости и граничные условия.
Плоское двухмерное неустановившееся течение несжимаемой сплошной

среды определяется уравнениями [1]:
dv; да дт-л. Эуь _ . , , „ ...

ρ — L = — — + ——, — - = 0, i,k = 1,2 (1)

dt ftq 5xk 9xk

^ | ^ Φ + ς ν > q i - λ ^ , λ = λ(Τ,ρ), μ = μ(Τ ) Ρ).

Классическая модель вязкой ньютоновской несжимаемой жидкости имеет вид

(2)Реологическое уравнение состояния вязкоупругой жидкости Максвелла возьмем в
форме записи [2]

j — = 2цва, 2еу = — + ~ , (3)

используя оператор субстанциональной производной d/dt = d/dt + ν^δ/δχ^.

Исследование возникновения и распространения завихренности на основе
модели (3) имеет большое значение не только с точки зрения приложений в
реологии, но и принципиально важно с методологической позиции. А именно: учет
релаксации вязких напряжений позволяет рассмотреть эволюцию
гидродинамических параметров под влиянием конечной скорости распространения
возмущений [3].

При постановке граничных задач применяем наряду с традиционным
условием прилипания жидкости условия скольжения [2;4]. Явление
проскальзывания жидкости на стенке наблюдается при течении неньютоновских
жидкостей типа (3) - растворы и расплавы полимеров, а также при движении
ньютоновской жидкости вдоль пористой границы. Условия скольжения и
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температурного скачка применяем в общем виде, по своей структуре аналогичном
тому, что получен в кинетической теории газов [5]:

где v w , T w - скорость и температура границы; коэффициенты ς , ς ν , ς τ , χ

зависят от свойств жидкости и стенки и характеризуют модель скольжения; τ, η -

единичные векторы касательной и нормали в точке храницы.
Линия сильного разрыва в потоке несжимаемой жидкости может иметь

разнообразную физическую природу. В частности,1 она является эффективной
моделью технологического устройства, при протекании через которое параметры
жидкости (плотность, вязкость, давление, и т.д.) резко меняются. Динамические
условия совместности на линии сильного разрыва имеют вид [1] ""

{p(N-vn)} = 0, {pn+pv(N7vn)} = 0, (5)

2. Гидродинамические свойства "автомодельного течения на двухмерной

подвижной границе. Для полных уравнений движения (1) вязкой жидкости можно

построить скалярный потенциал ξ = ξ(χ^,ί) - независимую переменную

лагранжева типа:

ex W ^ at ν ξ = ξ ( )

где P = P'+pB(t); Α, ς - вспомогательные функции. Подробные формулы

преобразования уравнений (1) к переменным· χ, ξ, t имеются з [б;7]. Отметим

свойства функций A(x,y,t), ξ(χ,γ,ΐ): 1) для завихренности жидкости имеем

2ω = 52Α/δΥ2 ; 2) условие непротекания Vn = О ( V ^ x + ν 2 ξ γ + ξ ι ) ξ = ξ ο = °

соответствует условию полной интегрируемости уравнения άξ-Ο; 3) вдоль
непроницаемой линии ξ = ξο = const выполняется условие прилипания ν τ = 0,

если (9Α/5Υ)ξ = ξ = 0.

Для изотермического движения вязкой несжимаемой ньютоновской

жидкости (1),(2) был рассмотрен автомодельный вариант:

oc = X/(t+B)2, B>0, μ,ρ-const, (7)
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Для полных уравнений Навье-Стокса, описьшающих двухмерное плоское
неизотермическое движение совершенного газа (P = RpT), изучалась

автомодельность вида
X

ε = аэ =
_ У , b >0, C p ,C v -const, λ = λ(Τ), (8)

t + b '

P = p/(t+b), P = p/(t+b),

где функции, отмеченные чертой, а также Vj, V2,T зависят от ε, аз.

Для каждого из вариантов (7) и (8) были определены скалярные

потенциалы типа (6): ξ = ξ(α,β) и ξ = ξ(ε, аз). После этого в плоскостях α, ξ и ε,

ξ строились решения в виде функциональных рядов в окрестности ξ = 0. В обоих
случаях. граница ξ = 0 является непроницаемой, и на ней тангенциальная
составляющая скорости жидкости (газа) равна нулю. В результате удалось
обнаружить новые локальные свойства несжимаемого и сжимаемого течений на
непроницаемой нестационарной границе вязкого потока.

Несжимаемая, вязкая жидкость. Компоненты вектора вязкого напряжения
xn i =T i lcos(n )X)+T i 2cos(n,Y) в этом случае пропорциональны соответствующим

компонентам вектора скорости жидкости: ξ = 0, t n i = 2μν·Κ, i = 1,2. Это значит,

что вектор вязких напряжений нормален границе и представляется формулой

ξ = 0 , =0, (9)

где К - кривизна линии ξ = 0 в плоскости Χ, Υ. Вычисления показывают, что

завихренность на непроницаемой линии, к которой прилипает жидкость, равна
производной от модуля полной скорости по направлению касательной к этой линии:

ι

(10)

Возьмем в каждой точке границы отношение завихренности к
ι'

ипроизведению модуля полной скорости на кривизну ω * =

отнесем вязкое напряжение к динамическому напору:

ξ=0

_Q

Q ; Re, /μΚ

Тогда для параметра Рейнольдса получим простое соотношение
Re*-τ* =2.

Для ξ = 0 имеем ρ = ρ « , + τ η η , т.е.
( И )



157

=[(p- p(vi2

_
(12)

где р* - параметр Эйлера.

Вязкий теплопроводный газ. Так же, как и в несжимаемом случае,

завихренность представляется формулой (10), а для составляющих вектора вязких

напряжений имеем ξ = 0, τηπ = ρ , τπ τ = 0 . Изменение плотности частицы газа

характеризуется выражением

ι

ξ - 0 , ρ"
=

dt 2 2μ(Τ)
(13)

где К - кривизна границы в плоскости х, у. Здесь первое слагаемое в правой части -
кинематический фактор, описывающий сжимаемость среды; второе слагаемое -
динамический фактор, обусловленный давлением им вязкостью газа. Если
плотность частицы газа постоянная, (dp/di) =0, то (13) соответствует

несжимаемом}' случаю (9). Сравнивая формулы сжимаемого и несжимаемого
вариантов, надо учитывать, что в записи фордгул давлению ρ газа отвечает разность
ρ - р ж для жидкости.

Вектор теплового потока, * касательный к непроницаемой

теплоизолированной границе (qn =0), имеет вид

co(dT/dt)

/dt

где правая часть пропорциональна завихренности и содержит субстанциональные
производные от температуры и модуля полной скорости.

Возьмем безразмерные параметры: отношение удельных теплоемкостей
1

число Эйлера-Ср /c v . число Рейнольдса Re* =

1

Ρ* = [p/p(v? + \ i ) \ . число Маха Μ * = [(vf + v2

2)/y * R T ] 2 .

Расчеты показывают, что

dp/dt
(14)

причем дробь справа описывает вклад сжимаемости отдельной частицы в

соотношение между числами Рейнольдса и Маха. С помощью (13) формуле (14)

можно придать вид
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ξ=0

Если плотности частиц газа различны и постоянны, то (14) дает Re* = 2γ*Μ* или,

что то же, Re» = 2/р* . Эта связь по форме записи и физическому смыслу

соответствует несжимаемому случаю (11), (12).

Числовые расчеты показывают, что зависимость Re»/y*M» от ю,-

монотонно убывающая при фиксированном γ*. С ростом γ* > 1 одному и тому же

ω* соответствует большее значение Re*/y*M*.

3. Эффект скольжения и вихрь скорости. Применение скалярного
потенциала вида (6) в качестве независимой переменной позволило рассмотреть
некоторые внутренние течения вязких жидкостей и обнаружить новые свойства
вихря скорости, проявляющиеся на фоне эффекта пристеночного скольжения.
Приведем здесь, опустив промежуточные выкладки, основные результаты.

Изотермическое скольжение ньютоновской жидкости вдоль неподвижной
стенки χ = 0: на линии скалярного потенциала ξ = ξ; = const качественное

поведение завихренности a>j В окрестности стенки определяется решением типа

фундаментального решения уравнения теплопроводности

— — e x p -(x-x j) /4vt ; a b x i -const.
ω.

Это означает, что связь COJ с кинематической вязкостью ν имеет ясно

выраженный немонотонный характер: с ростом ν>0 завихренность сначала растет,

достигает максимума,' после чего плавно уменьшается. На стенке зависимость

завихренности со, от вязкого напряжения (τΐ2) χ = 0 монотонно возрастающая и

близка к линейной.

Неизстермическая автомодельная стадия вязкой релаксации.
Вязкоупругая жидкость (3) движется в плоском кольцевом секторе; применяются
полярные координаты г, φ . Рассматривается температурный интервал, в котором
с ρ, μ, λ, ρ можно считать постоянными, а время релаксации вязких напряжений

зависит от температуры:

и . 1 1
γ = γ 0 1-expYi - - -const

T 0 /

Здесь T0(r) заранее неизвестна и характеризует жидкость в отрелаксировавшем

состоянии: Т-»Т 0(г),у ->-0. Движение жидкости происходит между отрезками

лучей φ = φ ' и дугами окружностей радиусов r = r l , i = O,l, совершающими

вращательное движение в одном направлении вокруг центра на неподвижной

плоскости с постоянными угловыми скоростями U'/г ' 5*0. Внешняя и внутренняя

дуги проницаемы; радиальные скорости подачи и протекания жидкости через эти
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границы заданы. Температуры дуг ψ1 постоянны. Условия скольжения и

температурного скачка (4) записываются в форме г = г ' :

; о<г°<г'
г 3φ

й г 3

где w - трансверсальная компонента скорости. Изучен автомодельный процесс, в
котором все гидродинамические и тепловые параметры течения зависят от двух
аргументов: радиуса г и автомодельной переменной φ - B t типа
распространяющейся волны. Решение найдено в виде локально сходящихся
функциональных рядов по степеням

8 = αεχρ(-κξ), 0 < α < 1 , к<0, ξ е(-со,0]; Re<50; Pr<20.
Формулы нулевого приближения характеризуют распределение
термогидродинамических параметров при γ-»0. Анализ решения и числовые
расчеты показали, что: 1) для рассматриваемого температурного интервала, в
котором вязкость постоянна, завихренность очень слабо реагирует на

неизотермичность процесса; 2) связь т/т ° с τΓ<ρ//τ°φ на линии скалярного

потенциала вдоль радиуса немонотонная - имеет максимум; 3) температурный
скачок на границах зависит прежде всего от разности температур границ и
коэффициентов температурного скачка,

To(r°)V pi f l 0 ) го

φ

г* = •

ЗРг

4ν2

*т
в правой части (15) доминируют члены, связанные в φ 1 - φ ° ; по мере увеличения
числа Прандтля Рг скачок температур монотонно возрастает; 4) в
отрелаксировавшем состоянии связь завихренности с числом Рейнольдса является

линейной, γ -»0, ω 0 = R e ( t r ( p j /б, Ке = рьУЬг ь/ц ь ; 5) завихренность потока в

значительной степени обусловлена кинематическим фактором - угловой скоростью
граничных дуг - и монотонно растет с увеличением этой скорости; 6) с ростом
коэффициента скольжения ζ модуль завихренности уменьшается; | ю | резко

возрастает у стенки, на которой прилипание проявляется сильнее; 7) связь
завихренности с касательным напряжением на стенке близка к линейной как в
изотермическом, так и в неизотермическом процессах.

Последние два свойства были отмечены и в случае неизотермического
движения ньютоновской жидкости: течение в плоском кольцевом секторе;
граничные дуги неподвижны и непроницаемы, на них происходит скольжение
жидкости; коэффициенты вязкости и теплопроводности - убывающие степенные
функции температуры; для построения скалярного потенциала применялись
аргументы а, г, где а = (t + b)exp(kq>), b > 0 . Представленные примеры
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демонстрируют существенное влияние пристеночного скольжения на формирование
вихря скорости вязкой жидкости.

4. "Трансзвуковой" эффект для вихря скорости. Уравнение
распространения завихренности в стационарном вязкоупругом потоке имеет вид

и 2 - с 2 — ^ + 2 u v — — + Μ -с1 — T = F,
V /ах 2 дкду \ I ду2

где с 2 = μ/ργ - квадрат скорости волны сдвига. Применяя аналог

газодинамического числа Маха M = ( u 2 + v 2 ) 2 / c , можно заключить, что при

Μ = 1 имеется линия перехода от "дозвукового" Μ < 1 к "сверхзвуковому" Μ > 1

процессу. Некоторые примеры таких течений описаны в обзоре [8]. Укажем здесь
новый вид движений, в котором для ω реализуется "трансзвуковое" явление.

Течение происходит в полуполосе вдоль оси ОХ, ограниченной

непроницаемой линией φγ: ν = ν = const. Две другие границы такие: линия s = s

(линия тока ψ = 0) непротекаемая, и жидкость скользит вдоль нее, а линия s = s°
(изотермический сильный разрыв) моделирует приток (отток) массы импульса на
границе. Уравнения движения сначала записываем в переменных χ, ψ, потом
переходим к независимым переменным лагранжева типа s, ν, где значение s = const
ассоциируется с одной из границ области течения. Алгоритм построения решения в
виде сходящихся функциональных рядов аналогичен [3] и описывает процессы,
вызванные двухмерным возмущением поперечной скорости ν. Приведем некоторые
результаты. Отметим индексом d параметры жидкости по другую сторону разрыва:
ud>Pd -const, v d sOJ-Cijj =Q· Применяем безразмерные параметры:

ω ^ ω χ , / u * , , R e < o = u c e x . / v , M i = w0 0Re ( I O, w 0 0 = y u 0 0 / x + .

На линии "звукового" перехода имеем

vc ^«(l-M^nus1 -Ψον(ψ - s 0 ) ]/^ 1
 - S °)ML VC

причем выбор интервала s^s 1 производится на основе следующих неравенств:

ο γ 4M2Jl-4

sV PU» m J l - M ^ ) ' * pu«-pdUd

Если m* >0, то (l-М2

Ю)j[sl - s ° j > 0, и ю <0, u d >0.

Если т„<0, то (l-M2

oVs1-s0)<0, 0>pu0O>pdud,

рИоо/pdUd > 1 - —
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Для всех вариантов (pgv^s = PdUd/(pua> - P d u d ) · Расчеты показывают, что

направления скоростей скольжения по обе стороны разрыва оказывают

значительное влияние на характер связи ω 2 с W^ (рис. 1,2).

о
оо

-12

Рис. 2
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В качестве непроницаемой границы ф] применялась также изобара

" р ^ р р ЖИДКОСТЬ стратифицирована по плотности (ρ = ρ(ψ)), выполнено

приближение Буссинеска. действует постоянная массовая сила F y = F . В этом

чувствительна еще и кслучае на линии сильного разрыва s = s связь ω = (\

ориентации поперечной скорости ν и вектора массовой силы (рис.3). Вместе с тем
реализация "трансзвукового" эффекта не зависит от направления массовой силы по
отношению к сильному разрыву.

Рис.3

В заключение отметим, что термочувствительность ω обусловлена пренсде

всего зависимостью динамической вязкости от температуры. Например, если

М- ~ (м-о + Μ·ι Ε). Ε = ехр Μ Τ , то на разрыве (5) имеем

α>0~βχρ(-μ,Ε°/μο).

Перечень условных обозначений в статье О.Н. Шабловского
"Пристеночное скольжение жидкости и нелинейные свойства вихря скорости в
двухмерном потоке":
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c p , c v - удельная теплоемкость при постоянном давлении, при

постоянном объеме; | f J - скачок функции, при переходе через разрыв; N" - скорость

перемещения линии сильного разрыва; ρ - давление; q v - мощность внутренних

источников тепла; Τ - температура; t - время; \1 = и, ν 2 - ν - компоненты вектора

скорости; xj = χ, χ 2 = у - декартовы прямоугольные координаты; γ - время

релаксации вязких напряжений; ζ - коэффициент скольжения; λ - коэффициент

теплопроводности; μ - коэффициент динамической вязкости; ρ - плотность; ty -

компоненты девиатора тензора напряжений; F - диссипативная функция;

ω = (δν 2 /dxi - dvi/dx2 )J2 - завихренность; c p (τ) = dH/dT.

Индексы: b - масштабы величин при обезразмеривании; независимые
переменные в роли нижних индексов - частное дифференцирование.
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