
Доклады Академии Наук СССР 
1951. Том LXXVI, № 1

ГЕОФИЗИКА
Л. КРЫСТАНОВ
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СЛИЯНИЯ

(Представлено академиком С. И. Вавиловым 16 XI 1950)

Известно, что одним из возможных механизмов роста капелек 
облака является тот, при котором капельки сливаются между собою. 
Укрупнение капелек этим механизмом осуществляется тогда, когда 
капельки верхних частей облаков ^), размера значительно больше 
среднего, начинают падать вниз сквозь облако с большей скоростью, 
чем падают меньшие капельки. На своем пути они встречают более 
мелкие капельки, сливаются с ними (в предположении, что каждое 
соприкосновение капелек приводит к их слиянию) и так непрерывно 
растут при своем движении вниз. Это имеет место и в том случае, 
когда кристаллики льда падают сквозь облако, состоящее из водяных 
капелек. Я- И. Френкель вводит для этого механизма укрупнения 
капелек удачное название «гравитационная коагуляциях

Необходимо найти зависимости между размером и скоростью рас­
тущей капельки и временем, когда известны начальные размеры 
падающей капельки, водность облака и его размеры. Этот вопрос 
особенно важен как для выяснения процессов при естественном об­
разовании осадков из водяных (состоящих только из водяных капелек) 
и из смешанных (состоящих из водяных капелек и ледяных кристал­
ликов) облаков, так, тем более, и для искусственного вызывания 
осадков, которые при обыкновенных условиях, существующих в ат­
мосфере, не могут выпасть из водяных облаков.

При исследованиях, производившихся до настоящего времени, 
основной предпосылкой являлось предположение, что падающая капля 
подчиняется закону Стокса. Это приводит, как показывает Я- И. Френкель, 
к парадоксальным результатам, а именно, что радиус капельки стано­
вится бесконечно большим за конечное время ее падения (?). Это за­
висит от того обстоятельства, что формула Стокса не может быть 
применена к капелькам сравнительно больших размеров и обладающим 
большой скоростью. Как известно, она применима как раз к капелькам 
с радиусами, заключенными в интервале 4-1(У5<г<10~3 см. С другой 
стороны, когда какая-нибудь капелька при своем падении растет, ее 
нужно рассматривать как частицу с непрерывно изменяющейся массой, 
а не как частицу с постоянной массой.

Принимая это во внимание, мы используем в самом общем виде 
основные уравнения динамики тела с непрерывно изменяющейся 
массой, которые были даны и использованы при изучении других 
проблем впервые И. В. Мещерским (3):

dv . , xdm с 
m-di + ^-^W = F’



где т — масса и v —скорость падающей капельки, и — абсолютная 
скорость капелек облака, a F—равнодействующая действующих сил. 
Если положим «= 0, т. е. если допустим, что капельки облака не­
подвижны, получим:

dv , dm ,
mdt+vw-F- 0)

Для упрощения задачи мы делаем следующие предположения:
1. Капельки облака имеют одинаковые размеры и неподвижны.
2. Падающая капелька не подвергается деформации при падении 

и сохраняет свою сферическую форму.
3. Каждое соприкосновение падающей капельки с другими капель­

ками облака приводит к мгновенному их слиянию, т. е. имеет место 
полная эффективность оседания мелких капелек на падающей капле.

Силами, действующими на падающую каплю, являются притяжение 
земли mg и сопротивление среды (облака) IF, сквозь которую падает 
капля. Следовательно, получаем следующее уравнение движения:

d^ । dm Tv/

где т и v в нашем случае переменные величины. Мы предполагаем 
еще, что сопротивление среды IF равно сопротивлению, которое ока­
зывает воздух падающей сферической капле. Сопротивление воз­
духа мы берем в самом общем виде в зависимости от числа Рей­
нольдса Re и «коэффициента лобового сопротивления» С, который 
также является функцией Re (4). Получаем:

W^^Rv^, (3)

где

Re = ^

(R— радиус падающей капельки, т; — коэффициент трения воздуха, 
р — плотность воздуха). После простых преобразований получаем:

U7 (4)

где С—функция R и V, которые являются переменными величинами. 
Для малых значений Re, т. е. для мелких капелек, которые падают 
медленно, величина СRe/24 приближается к единице, и тогда в силе 
закон Стокса для падения мелких капелек. Приняв во внимание (4), 
можно переписать уравнение движения (2) в виде

dt) । dm С л+ = — (°)

Для простоты предположим, что облако состоит из капелек ради­
уса г0, число которых в единице объема п достаточно большое, чтобы 
осуществить почти непрерывное увеличение массы падающей капель­
ки. Число соударений капельки радиуса R с другими капельками на 
протяжении 1 см ее пути, если пренебречь размерами капелек, будет

К = nR^n. (6)
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При одном соударении радиус падающей капельки увеличивается 
очевидно, на величину hR = r30l3R2. Увеличение радиуса dR на пути 
dz будет

dR = N ^R dz = у г3 п dz,

или, обозначив через е = 4/3 кг3 $wn «водность облака», получим

dR = ^dz, (7)

где рю — плотность воды.
С другой стороны, так как масса падающей капельки т = il-inR3pw, 
dm . r„ dR dR е dz е dm

р® di: так полУчаем ~dt = ™R2,V.
Уравнение движения (5) можно написать в таком виде:

dv dR dm С
m^di + v-dr = ms

или, если подставим соответствующие значения т, dR / dt, dm I dt и 
произведем соответствующие преобразования, получим:

dv I оЛ 1 Ср\®2 4g? _
+ ----- “ = °- (»)

Подставив v2 = V", р = 6 Q + q— получим уравнение

dR + Р R ~ = °’ (9)

которое дает зависимость между скоростью и радиусом падающей и 
непрерывно растущей капельки. Когда C — f^R^v), уравнение дает 
ту же зависимость, которую можно применить и для мелких капелек. 

Согласно Ленгмюру (4), когда число Re станет больше 1000, что 
соответствует капельке, имеющей радиус, равный приблизительно 
1075 а, и скорость около 790 см/сек., коэффициент лобового сопротив­
ления с большой точностью остается почти постоянным, колеблясь 
около значения С = 0,4. Вычисления коэффициента лобового сопротив­
ления С, сделанные Gunn и Kinzer (5) на основании опытных данных, 
показывают, что С остается почти постоянным для крупных капелек, 
имеющих радиус между 0,04 и 0,29 см, и колеблется в пределах от 
0,494 до 0,815 при среднем значении 0,6. Если допустим в таком слу­
чае С = const, то уравнение (9) интегрируется легко, и тогда получим 
после соответствующих преобразований,

<10>

где Ro и v0 — начальные радиус и скорость падающей капельки.
Из уравнения (10) видно, что при е = 0, т. е. когда капелька не 

падает сквозь облако, R = Ro, а скорость v =
Однако, когда е=^0, R>Rn- В этом случае, так как р является 

числом порядка 103— 104, первый член правой части равенства (10) 
становится достаточно малым в сравнении со вторым членом:
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В таком случае скорость можно представить с большой точностью 
с помощью равенства:

(1П
или, подставив значения для р и q:

, 8gPw
~ 7ефЗСр R. (12)V

Это показывает, что при укрупнении путем слияния сравнительно 
больших капелек скорость их растет пропорционально R'1', а не про­
порционально R2, как по закону Стокса для мелких капелек, 
имеющих постоянную массу.

Из уравнения (12) можно получить выведенную Шмидтом полу- 
эмпирическую формулу:

10«/?'/* v ---------- г.----------- , 
0,787 R l‘ + 503 R*

если применить ее для сравнительно крупных капелек. В таком случае 
первым членом знаменателя формулы можно пренебречь, и тогда 
v~2• 103 R'\ где коэффициент при R'1' того же порядка, как и в фор­
мулах (И) или (12), если в них положить е — 0.

Зависимость между Rut найдем, приняв во внимание, что^ = г1;

подставив вместо v его значение из формулы (12), получим:
dR _ е . Л 8ДРда р 
dt~^pwy +

или

dt = ~ е
dR

7e + 3Cp K

(13)=

Проинтегрировав это выражение в пределах от 0 до t и от Ro до 
R, получим для времени t, за которое радиус капельки увеличится 
с Rq до R, следующее выражение:

4Pw Г7е+ЗСр
(14)

Когда водность облака е стремится к 0, время, за которое проис­
ходит укрупнение капельки, стремится к бесконечности; чем больше 
лобовое сопротивление С, т. е. чем меньше скорость, тем больше 
увеличивается время, за которое происходит укрупнение.

Возьмем пример: е = 10-6г- см“3, р~ 10~3, g— 103, С — 0,6, Ro= 0,1 см, 
R = 0,2 см, тогда —400 сек. ~6 мин. При средней скорости паде­
ния капельки 700 см / сек. путь который она пройдет в этом случае, 
будет приблизительно равен 2800 м.

Так как уравнение (9) решено при условии, что С = const, то можно 
с очень большой точностью применить его для любого интервала 
размеров капелек, в котором это условие выполнено.

Физический институт Поступило
Болгарской Академии наук 2 X 1950
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