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МАТЕМАТИЧЕСКАЯ ФИЗИКА

Н. А. БРАЗМА

НОВОЕ РЕШЕНИЕ ОСНОВНОЙ ЗАДАЧИ РАСПРОСТРАНЕНИЯ 
ЭЛЕКТРОМАГНИТНЫХ ЯВЛЕНИЙ В ПУЧКЕ ПРОВОДОВ

(Представлено академиком В. И. Смирновым 4 XI 1850)

§ 1. В предыдущей заметке (*) я рассмотрел основную задачу рас­
пространения электромагнитных явлений в пучке проводов, которая 
заключается в следующем.

Найти решение и = и (х, t), i = i (х, f) обобщенной системы теле­
графных уравнений с постоянными коэффициентами, записанной в 
матричном виде так:

du , di di „ . du
+ Е — ~dF=Gu + CdT, 0)

и удовлетворяющее граничным условиям

и (0, £) = u0 = const, и (/, t) = 0 (2)

и начальным условиям

и (х, 0) = 0, и' (х, 0) = 0. (3)

Решение ищется для значений аргументов

0<^<^оо. (4)

В этой задаче условие (3) можно заменить другим более есте­
ственным условием

и (х, 0) = 0, i (х, 0) = 0. (5)

А. Д. Мышкис сообщил мне доказательство теоремы единствен­
ности для непрерывно дифференцируемых решений некоторых подоб­
ных задач, а также и доказательство затухания частных решений, по­
лученных мною в предыдущей заметке (х) матричным методом разде­
ления переменных для решения поставленной там задачи. При этом 
предполагается симметричность и неотрицательная (отчасти и положи­
тельная) определенность матриц С, L, G и R. Эти предположения 
обычно удовлетворены.

В настоящей заметке мы рассмотрим новый вид решения системы (1) 
при граничных условиях (2) и начальных условиях (5). При этом 
число проводов п мы будем считать произвольным. Таким образом, 
С, L, G и R — квадратные матрицы порядка п, которые мы будем 
предполагать постоянными, симметричными и положительно опреде­
ленными.

§ 2. Сперва мы будем искать частные решения системы (1) в виде 
/7\ .Uk — Vk (t) sin —j- , U = j* (0 cos — , (6)
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где v* (t) и js (t) — колонные матрицы, состоящие каждая из п элемен­
тов, a k—натуральное. Тогда система (1) переходит в такую:

kit „ Di 1 i d'ik kn s __ г'жг гdVk (7)
Первое и второе уравнения (7) мы 

и объединимL-1 и С-1 соответственно 
ренциальное уравнение 

d 
dt

умножим с левой стороны на 
их в одно матричное диффе-

содержащее постоянную

М* =

К

V4
+ м4 jft

= 0,

квадратную матрицу порядка 2я: 
kn

L-i R L-i

kn——Сг^ C-iG

(8)

(9)

Общее решение уравнения (8) имеет вид (2):
II —e

bA 

а4
(Ю)

। 'ь
причем Ь* и а* — произвольные постоянные колонные матрицы, состоя­
щие каждая из п элементов. Заметим, что решение (10) справед­
ливо как при простых, так и при кратных 
матрицы М*.

Отсюда получается:

элементарных делителях

и* =

ift = jEw0KM*'

аА 

ь* 

аА

. k~x 
SIH -у- ,

knx 
COS -у- ,

(И)

где в выражении прямоугольной матрицы Ея обозначает 
матрицу порядка п, а 0 — квадратную матрицу порядка п,

единичную 
состоящую

из одних нулей.
Случай k — 0 приходится рассматривать отдельно. Здесь мы имеем 

uo = O, a i0 удовлетворяет уравнению
^- + L-iRio = O (12)

с квадратной матрицей L 1 R порядка п, общее решение которого мы 
запишем так:

1 Z.-L"1 R' I,10 = —е Ьо. (13)

§ 3. Характеристические числа матрицы отличаются обратным 
знаком от корней уравнения

L"1 R + ХЕ„

С-1 G + ХЕ„
= 0,

которое после преобразования

L-1 R + ХЕ„ R + XL

С-1 G + *Е„ kit
’ “ En G + АС

- —С-1I с

L 0

0 С - —С-

I L

ktz
т^1

kn
Т E«
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переходит в уравнение

R + XL

йл
- —Е« G + ХС

(И)

Уравнение (14) является (с другими обозначениями) тем же алге­
браическим уравнением с неизвестным А, которое встречается в за­
метке (') и для которого А. Д. Мышкис доказал отрицательность 
вещественной части всех корней (последнее равносильно вышеука­
занному затуханию частных решений).

Следовательно, все характеристические числа матрицы обладают 
положительной вещественной частью, и поэтому решение (10) являет­
ся затухающим.

У матрицы же L"1 R, которая является произведением двух поло­
жительно определенных матриц L-1 и R, все характеристические числа 
положительны. Это утверждение получается на основании такой (из­
вестной) теоремы. Если А и В — симметричные положительно опреде­
ленные матрицы, то все характеристические числа матрицы АВ поло­
жительны. Нам понадобится впоследствии еще следующее, сообщенное 
мне М. А. Наймарком, дополнительное свойство, что эта матрица АВ 
приводима к диагональному виду.

Таким образом, решение (13) оказывается апериодически затухаю­
щим.

§4. Задача 1 (вспомогательная). Найти решение системы (1) для 
значений аргументов (4) при граничных условиях

u(0,0 = 0, и (/,0 = 0 (15)

и начальных условиях
и (х, 0) = fi (х), i (х, 0) = f2 (х). (16)

Решение этой задачи мы ищем в виде суммы ряда частных реше­
ний вида (11) и (13), удовлетворяющих граничным условиям (15):

u(x,/) = 2 = I!0, Ел|| 2 е~М* 
k=l k=A

і (x, 0 = 2 u = 4* bo + IIE-°II3 
k=O k=l

. k-nx
Sin —7—

(17)
knxcos —

Затем требуем удовлетворения начальным условиям (16):
ОО со

fi W = 2 a*sin fa W = 4~b0 + s b*cos^-. (18)
Л=1 ^=1

В предположении достаточно гладких матричных функций fx(x) и 
f2(x) ряды Фурье (18) с матричными коэффициентами а* и Ь«. сходят­
ся, и мы имеем:

I
a* = fi (х) sin—j- dx,

о

i
. 2г,,, knx ,bs = -y \ f2 и) cos —dx

0

(6 = 0,1,...). (19)

Подстановка найденных at и bj в формулы (17) дает решение 
задачи.

§ 5. Задача 2 (главная). Найти решение системы (1) для значений 
аргументов (4) при граничных условиях (2) и начальных условиях (5).
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Подобно рассмотренному в моей предыдущей заметке (*), решение 
мы ищем в виде сумм

и (%, t) = Ui (%, t) + f (x), i (x, t) = ii (x, 0 + g W, (20)
причем f(x) и g(x) определяем так, чтобы они удовлетворяли системе 
(1) и граничным условиям

f(O) = uo, f(/) = 0. (21)
Тогда мы получаем, принимая во внимание положительность ха­

рактеристических чисел матрицы RG, такие выражения:
а(г1-С,сНГР0(/-Х)11

(22)

причем матрица RG приводима к диагональному виду. Матричные же 
функции іц (%, t) и ІДх, t) должны быть решением задачи 1 при таком 
частном виде матричных функций начальных условий (16): Т (%) = —f (х), 
f2W = — g ОО-

Подстановкой выражений (22) в формулы (19) и интегрированием 
полученных матричных выражений посредством приведения их к диа­
гональному виду мы получаем следующие выражения для матричных 
коэффициентов Фурье:

2 kit I \a* =---- ^-j-^RG + EnJ

Таким образом, мы имеем:

-4g(rG+^E") и0.Uo, 5^ —

2 
/а*

G (RG + ~ E

ЙК ( £2K27“ ( RG + ,2

2
/

«о

U„
G

kit (DC I ^2^2 ^RG + -^ u0. (23)

мы получаем решение задачи 2:
Наконец, подставив выражения (23) в формулы (17) и принимая во 

внимание (20) и (22),
. shKRG / — x)U (x, t) =-------7=2^---- < Un —sh KRG / 0

2
I

XI . k~XЛ sin — e к
G

kit u0. (24)(or I ^2^2 ^6 + -^-

i(x t) = G Ch u___L g-L-1 Rr D 1 u _rRGshVRG/ ° ‘ K 0

G f|
-4і|Еп,° II 2 cos^e-**'

*=-i
kn (rg + u0. (25)

Из вышеуказанной теоремы единственности следует, что отдельный 
член ряда (24) равен сумме соответствующих членов раньше полу­
ченного решения той же задачи (выражаемого для случая п = 2 фор­
мулой (16) заметки (г)).
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