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МАТЕМАТИКА
С. Б. СТЕЧКИН

НАИЛУЧШИЕ ПРИБЛИЖЕНИЯ ФУНКЦИИ, ПРЕДСТАВИМЫХ 
ЛАКУНАРНЫМИ ТРИГОНОМЕТРИЧЕСКИМИ РЯДАМИ

(Представлено академиком С. Н. Бернштейном 2 XI 1150)

1. Обозначим через Л класс непрерывных периодических (с перио­
дом 2л) функций f(x), ряды Фурье которых являются лакунарными, 
т. е. имеют вид

^akzosnkx + bksmnkx = 2 Р* cos (п*х — аД (1)
й=1 й=1

где
0О1<л2<---> Р* >0> Па-н/«* = ?*>*>! (£=1,2,...). (2)

Хорошо известно, что для любой функции /£Л ее ряд Фурье (1) 
абсолютно сходится. Положим

s„(х) = 2 Р* cos (nkx — а*)> гп (х) = 2 р* cos <п*х ~ а^’

^(/) = max |/W — s„(x)|, Ап = Aa(f)= ^рк;
пк>п

через E^f) обозначим наилучшее приближение функции / посред­
ством тригонометрических полиномов порядка п.

С. Н. Бернштейн (*) (см. также (2), стр. 31—36) доказал, что если 
^Л и qk = 2pk + 1 (£=1,2, ...), где рк—натуральные числа, то 
En(f) — Ri(f) (п = 0, 1, 2,...). В настоящей работе доказывается, что 
для любой функции

2. Напомним несколько известных результатов и получим некоторые 
следствия из них.

Теорема Сидона ((3), (4), § 6.4). Пусть /^Л. Тогда
ОО
2рл<С3(Х)шах |/(х)|.
*=i х

(3)

Строго говоря, Сидон утверждает лишь, что ряд X р4 сходится, од­
нако рассмотрение его доказательства показывает, что на самом деле 
им установлено в точности неравенство (3).

* Как обычно, я употребляю знак — в качестве знака порядкового ра­
венства. Соотношение Ап~Бп обозначает, что существуют положительные кон­
станты Ct и С2 такие, что для всех п С^п С Ап С2Вп. Встречающийся ниже 
знак ~ употребляется для записи асимптотического равенства.
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Пусть /£Л. Применяя теорему Сидона к функции гп (х), получаем

An(f)<C3^Rn(f), (4)

откуда, в связи с очевидным неравенством Rn(f)<^ А. (/). сразу вы­
текает соотношение R.Af) — Ап^)-

Суммы Валл е-П у с с е н а ((5,6); см. также (’ °)). Согласно Валле- 
Пуссену ((°), стр. 33 — 35), для любой непрерывной периодической 
функции 9 имеем

| <р (х) — а„, m (х, 9) К 2 Л Е»

1 т
где ап, т (х, 9) = ——j 2 М-р (*> ®) («> от, = 0, 1,2,...).

Р=0
Пусть /^Л. Воспользуемся неравенством (5), положив в нем 

п = пй и m = n*+i—nk—1. Тогда

Snk^(x,f) = snk(x,f) (д=0,1,..., m), ank,m(x,f) = snk(x,f), 
п + т + 1 .. п _ 1 I 1 г 1 I 1 _ .. Х ....

т + 1 — 1+т + 1 1 + 9а —1 + 1 х“ 1

Поэтому
(*=1,2....). (6)

3. Теорема 1. Пусть f ЬЛ. Тогда Еп (f) ~ R„ (/) ~ Ап (f); точнее.

С& (X) Ап Rn Ап (f) (п = 0, 1,2,... ), (7)
где Сь(Х)>0 и зависит только от X.

Доказательство. Неравенства Еп (/) < Rn (f) < Ап (/) очевидны. 
Остается показать, что

An(f)<C6^En(f) (п = 0, 1, 2,...). (8)

Пусть сперва п = nk (k = 1,2,...). Полагая в неравенстве (4) п = nh 
и пользуясь оценкой (6), получаем:

А„к (/) < С3 (X) R,lk (/) < С3 (X) С, (X) ЕПк (/) = С7 (X) E„k (/)• (9)
Пусть теперь пк^<п<пк (k = 1, 2,..., п0 = - 1). Заметим, что для 

этих значений п An(f) = Рй + А,1к(Л, и рассмотрим отдельно два слу­
чая: 1) Лй>Т?а и 2) Ank<ypk, где ул= С7(Х) /(1 + С7(Х)).

1) Ай>ТРа- Имеем
Ап (/) = Ра + Апк (/) < V A"k' (/) + Ank (/) = -у2 Апк (Л-

Далее, в силу (9) и монотонности {Elt}, АПк (/) < С7 (X) Еп (/), и два 
последних неравенства дают:

д1(/)<1±Х С7(Х)Д„(/) = {1 +2С7(Х)}Д„Ш- (10)

2) Д„/с<УРа- Рассмотрим функцию
г^к_х {х) = Ра cos (пкх - а*) + Qa (х\

где

1 QaW I = ' Рх cos (/txX 0Сх) 

х=А+1
Рх Апк-
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В силу условия 2) функция в 2л* точках хр = (рп-\-а.к) ] пк
(р=],2..........2л*) одного периода принимает с чередующимися зна­
ками значения, по абсолютной величине большие, чем (1—у)р*- Так 
как л < л*, то 2л*>2л + 2. Таким образом, применима теорема Валле- 
Пуссена ((*), стр. 96), которая дает En(rnjc^ = En(f) >>(1—у)р*. Но 
при выполнении условия 2)

Л (Л = Р* + А,* < Р* + YP* = f1 + у) Рл-
Отсюда

АИ<(1 +т)р»< = + 2C,(x))£»w. (И)

Неравенства (9), (10) и (11) показывают, что при всех л>0

(/)< {1 + 2С7(A)}En(f) = С6(А)Еп(/).

Итак, доказано неравенство (8), а вместе с ним установлена и тео­
рема 1.

Теорема 2. Пусть f£Jl и qk-> оо (Л->оо). Тогда при п-+оо

En(f)^Rn(f)^An(f). (12)

Доказательство. Для любого натурального k и любого цело­
го р положим = (р- + а*)/л*. Зафиксируем числа k и р и обозна­
чим через хр^тг точку вида хр^т, где т — целое, ближайшую к хр1}. 
Очевидно, /лх == ^ (^,/?) и | х^ — х^-^ I <тс/л*+г Далее, обозначим 
через Хр^т, точку вида ближайшую к х^, и т. д. Мы по­
лучаем последовательность {х^^ } (Z = 0, 1,2,...., т0 = 0), причем 
числа mt = m^k, р) — целые и

I xP+2mt — Хр^Й)^ | / л*^^ (7=0, 1,2,...). (13)

Из условия qk->oo (А—>оо) вытекает, что ряд S 1 / л* сходится.
Поэтому существует предел хр^ = lim хр^2- 

1—>03 1
Изучим некоторые свойства чисел хрк\ В силу (13) имеем для

0° ОО
I ZW I VI I „VW) уь+h+l) . 1I Xp^-2mi Хр I •С 2j I Xpy2mh — Хру2тк+г I Скуі — Л V — . (14)

h=l h=k+l+l

Произведем оценку констант ск. Зададим е (0<е<1/3), и пусть 
Для £>£0(е). Тогда для

Q= _д_<1+ _1_ +—1— + >< 
"*+1 \ 9*4-1 9*4-1 9*_|-2 ) '

<^7<1+г + *’ + -)=<^^Г- а®)
Покажем, что для k k0

х^ — х^ <2^. (16)

В самом деле, согласно (14) и (15), 

I xw — <c < к ея
(1 — е) (1 — е) nkqk (1 — s) пк
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Отсюда
да - да=да- - да+<да- - да-> -<да - да> > 

it 2ея   к Л ।   2е \ _
■^Пк (1 — е) Пк ~~ Пк\ 1 — е / ’

так как е<х/з- Аналогично доказывается и второе неравенство (16).
Рассмотрим теперь функцию /"Пк1(х) лРи Пользуясь нера­

венствами (14) и (15), получаем
г iZW ДНОп \ 1 „ ПЛ*) _ ICOS { flk+l \^P •^Р+2/п^)} 1 ^k+l - Xp-\-2n^ |

, ^n+l _ 1 rc , ея
>^-nk+lCk+l>l (i-e)qk+l^1 1 —e’

(— 1 Yrnk_x (W) = (— 1 )p 2 Pm cos (nM — ам) =

/=э

= Х^^да-да^йХ-т^)^ (I?)
1=0

Таким образом, в силу (16) и (17), функция г,^ (х) принимает 
в 2пк точках Xpk) (р = 1, 2, ...,2л*) одного периода с чередующи­
мися знаками значения, по абсолютной величине не меньшие, чем 
(^1 — 1 s J Ап/с1. Применяя теорему Валле-Пуссена, получаем отсюда, 
ЧТО ДЛЯ tlk ! П •< П,е

Е,.^) = Е. (Л > (1 - HX-i “ 0 - 1^) А-

Из этого неравенства вытекает, что при п—»оо
^(/)>{1-о(1)}Л(/).

Кроме того, имеем очевидные неразецства Еп (/ХЯЛ/Х А., (/)• 
Сопоставляя эти оценки, приходим к соотношениям (12), и теорема 
2 доказана.

4. Любопытно отметить, что для функций / порядок наилучших 
приближений вполне определяется заданием чисел р* и совершенно 
не зависит от „фаз" at.

Заметим в заключение, что теоремы 1 и 2 позволяют эффективно 
строить функции, обладающие заданным характером поведения наи­
лучших приближений. Например, если ?(8)Е№ (см. определение 3 
моей работы (10)), то для функции

f(x) = 2 {ф (2'А) - Ф (2'Х ) cos (2*х - “*)
при произвольных а* имеем Еп (f) ~ <р (я1)-
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