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МАТЕМАТИКА
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ФОРМУЛЫ ДИФФЕРЕНЦИРОВАНИЯ ПО ПАРАМЕТРУ ФУНКЦИЙ 
ЭРМИТОВЫХ ОПЕРАТОРОВ^

(Представлено академиком М. А. Лаврентьевым 21 X 1950)

1. Пусть Н(т) есть эрмитова матрица, порождающая линейное пре­
образование «-мерного пространства &п, элементы которой дифферен­
цируемы по параметру т. Обозначим через Х/(т) (1=1,..., га) ее соб­
ственные числа и через Еі(у)— операторы ортогонального проектиро­
вания пространства на направления собственных векторов ег(т), 
соответствующих собственным числам ХДт).

Как известно,

Я(т)= ^(W
І=1

Если /(X) есть дифференцируемая функция вещественного перемен­
ного X, то для вычисления производной по параметру т от матрицы 
/(Я(т)) естественно было бы пользоваться формулой

= £ 2 /E^ = 2 І V W) • (О 
;=1 і=і

Однако отдельные слагаемые первой суммы в (1) могут быть не диф­
ференцируемы в тех точках т, где меняется кратность соответству­
ющего собственного числа, а потому формула (1) не всегда применима.

Мы установим формулу, дающую возможность эффективно вычис­
лить производную df (Н (т)) / du во всех случаях.

Теорема 1. Если /(X) имеет непрерывную производную dffdl. 
в окрестности точек Х;(т0) (1 = 1,..., п), то справедлива формула

---- = 2j 2j - Ei Ы Eh (t0). (2) 
k І I R

Формула (2) непосредственно проверяется для случая, когда /(X) — 
полином, а затем теорема доказывается при помощи предельного 
перехода.

Формула (2) имеет преимущество перед формулой (1) даже и в 
том случае, когда последняя имеет смысл. Для вычисления производ­
ной в точке т0 по формуле (1) нужно знать функции Х;(т) и Еі^) 
(1 = 1, 2,..., га) в окрестности этой точки, в то время как в формуле 
(2) фигурируют только значения этих функций в точке т0.
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Если матрицы, стоящие слева и справа в (2), применить к вектору 
п

X = 2 Ci (?) Si (?), то мы получим формулу

----Х = \-Xk---- ^До)- <3)

Формулы (2) и (3) остаются справедливыми для случая, когда Н (г) 
есть эрмитов оператор с дискретным спектром в гильбертовом про­
странстве ©, a dH]dz обладает конечной //-нормой (*).

2. В случае, когда Н (?) есть ограниченный эрмитов оператор в 
гильбертовом пространстве ф, естественным обобщением формулы (2) 
является формула

С Г Ш-Ш . ч dH(x0) d , 
rf? И X—р. d- «-СцЙоЬ (4)

где /ДД) — спектральная функция оператора //(?). Двойной интеграл 
(4) желательно понимать как повторный. Если первое интегрирование 
провести по Л, то останется интеграл типа

(р) dE^, (5)

где /Дц) — уже операторная функция переменного и.. Под этим инте­
гралом мы понимаем абстрактный интеграл Стильтьеса, определяемый 
как предел соответствующих интегральных сумм (2).

Теорема существования. Если Е(ф) является неопределен­
ным интегралом в смысле Бохнера (3), т. е.

= \$(рМр

то интеграл (5) существует.
Для интеграла (5) имеет место оценка

| \Е(^еЛ< max || /Др) || + f || G(p) 
1 a a

с помощью которой устанавливается следующий результат.
Теорема 2. Если /(X) имеет абсолютно непрерывную произ­

водную df I d\ в некоторой окрестности, спектра оператора /Д?о), 
то формула (4) справедлива.

Замечание. Легко видеть, что если функция f (X, ?) зависит 
от ? и существуют непрерывные по обеим переменным в окрестности 
спектра оператора Н (?) при | ? — ?0 К 8 частные производные df (К, ?) / d'K 
и df(K, г) I dr, причем df(K, r) / dK абсолютно непрерывна по X, то

'ОДДІіДІ=До) dEM + J dEx (?0).

(6)
3. Для вычисления высших производных от оператора f(H (?)) 

приходится дифференцировать по параметру ? интегралы типа

D(?)= ^(р, г^Е^г). (7)
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Формула (6) остается справедливой и для таких операторов, если 
заменить в ней функцию /(ц, т) оператором Е(^ г), при условии, 
что и dF (у., т) /дх представимы по р. неопределенными
интегралами Бохнера и непрерывны по т.

Пользуясь этим, можно, например, написать формулу для второй 
производной

= 2! Ш +

где ДІ2....Х/+1/ есть t-я разделенная разность функции /(Л) в точках 
К • • •, Хг+1 (4).

Вообще, если оператор Е1 (т) имеет в окрестности точки т0 непре­
рывную производную по т порядка k, а Е(ц, т) есть оператор, у кото­
рого все частные производные порядка k в окрестности спектра опе­
ратора EI (т) при |т—ти | < 8 непрерывны по т и представимы неопре­
деленными интегралами Бохнера по р, то операторный интеграл (7) 
имеет в окрестности точки т0 непрерывную производную dkD (т) Ida11, 
которая может быть вычислена путем последовательного применения 
формулы (6).

Замечание. Аналогично предыдущему можно определить инте­
гралы типа

j dE^Ffa, т), ^(р, т)й£’ц(т)/72(р, т).

Производные от таких интегралов вычисляются по формулам, подоб­
ным приведенным выше, причем порядок расположения Fu dE^, F2 
сохраняется.

4. Приведенные выше формулы, повидимому, удобны для формаль­
ного разложения по параметру е операторов вида

/(Яо + еЯД

где /(X) — достаточное число раз дифференцируемая функция, а Яо 
и Я, — эрмитовы операторы.

Например, включая члены порядка s2, будем иметь

/ (Яо + ЯА) = /(Яо) 4- е dE^dE» +

/(X) — /(и) _ /(у) — /(и)
+ Щ dE^dE^dE, + . .., (8) 

где Е\ — спектральная функция оператора Яо.
Если оператор Яо имеет дискретный спектр, а — полная 

система его собственных векторов, то по формуле (8) можно вычи­
слить

(/ (^о + е^і) Фь Ф/) = (/(^о) Фь Ф7) + s/^_^ +

62 J\TH--------ід
X, —X, X.. —X» \ — 4 ^М^іФУ’ ф*) + • • •

J 1 k \ J K 1 K J
(9)

5. Результаты n. 3 можно применить для установления дифферен­
цируемости по параметру решений некоторых векторных и оператор­
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ных уравнений, встречающихся при асимптотическом интегрировании 
систем линейных дифференциальных уравнений.

Пусть И (т) есть эрмитов оператор, непрерывный по т при а Ь. 
Полным спектром П этого оператора мы будем называть множество 
точек (Хо, т0) плоскости (X, т), для которых Хо есть точка спектра опе­
ратора Н (т0) П есть замкнутое ограниченное множество
плоскости (X, т). Пусть П есть некоторая замкнутая изолированная 
часть полного спектра. Совокупность Л(т0) первых координат точек 
множества П с фиксированной второй координатой т0 есть замкнутая 
изолированная часть спектра Л(т0) оператора Н(т0). Обозначим через 

(т) инвариантное подпространство оператора Н (т), соответствующее 
этой части его спектра.

Теорема 3. Рассмотрим уравнение

Н (т) х (т) = g (т) (а^т^Ь), (10)

где %(т), g (т) — векторы из а Н (т) — ограниченный эрмитов опе­
ратор в спектр которого при некоторых значениях т€[а, Ь] 
может содержать точку X = 0. Пусть П есть некоторая изолиро­
ванная часть полного спектра оператора Н (т)„ содержащая все 
точки полного спектра вида (0, т), и @ (т) — инвариантное подпро­
странство оператора Н (т), соответствующее П.

Тогда, если при каждом т6[а, вектор g(x) ортогонален Щт) и 
если g (т), Н (т) имеют на сегменте [а, й] непрерывные производные 
по т порядка k, то решение

Л(т)-Л(т)

уравнения (10) также обладает на сегменте [а, Ь] непрерывной про­
изводной по т порядка k.

Теорема 4. Рассмотрим операторное уравнение

Я(т)Л(т)-^(т)Я(т) = ^(т) (а<т<И (Н)

где Р(т) есть оператор, который при каждом значении т переводит 
инвариантное подпространство §(т) оператора Н(у), соответ­
ствующее некоторой изолированной части П его полного спектра, 
в ортогональное дополнение §©§(т), а на последнем равен нулю.

Уравнение (11) имеет решение
dEx

и
Л(т) —Л(т) Л(т)

(12)

причем, если операторы Н (т) и Р (т) имеют на сегменте [а, Ь] 
непрерывную производную порядка k, то и решение (12) обладает 
этим свойством.
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