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МАТЕМАТИКА

И. ГОХБЕРГ

О ЛИНЕЙНЫХ УРАВНЕНИЯХ В ПРОСТРАНСТВЕ ГИЛЬБЕРТА

(Представлено академиком А. Н. Колмогоровым 9 XI 1950)

§ 1. В этой заметке мы будем рассматривать линейные ограничен­
ные операторы, определенные в пространстве Гильберта Н.

Буквой В будем обозначать обратимый оператор, а буквой Т— 
вполне непрерывный. Оператор, сопряженный к оператору А, будем 
обозначать через А*. Наконец, выражение „число решений однород­
ного уравнения” будет всюду заменять более длинное: „число линей­
но независимых решений однородного уравнения”.

Теория Ф. Рисса (х) линейного уравнения

х — Тх = у,

где х, у^С (С —пространство непрерывных функций), а Т—вполне 
непрерывный оператор, определенный в Н, была обобщена на произ­
вольное пространство типа Банаха Шаудером.

Основные теоремы Рисса — Шаудера применительно к рассматри­
ваемому гильбертову пространству Н можно сформулировать следу­
ющим образом;

а) Однородные уравнения

Uy — <р — Гер = О, U*y = ф — Гф = О 

имеют одинаковые конечные числа решений.
б) Оператор U (соответственно U*) нормально разрешим, т. е. для 

разрешимости неоднородного уравнения Uy=f (соответственно 
— /1) не только необходимо, но и достаточно, чтобы его правая 

часть была ортогональна ко всем решениям однородного уравнения 
U*^ = 0 (соответственно Uy = 0).

С. М. Никольский (2) установил необходимые и достаточные усло­
вия, при которых для оператора U имеет место теория Рисса — Шау­
дера. Для формулировки его теоремы введем следующее определение.

Определение. Будем говорить, что оператор U удовлетворяет 
условию N, если он представим в виде суммы операторов U = В + Т, 
из которых В — обратимый, а Т — вполне непрерывный.

Теорема С. М. Никольского. Условие N необходимо и 
достаточно для того, чтобы для оператора U имела место теория 
Рисса — Шаудера в пространстве Банаха.

Сформулируем теперь теорему С. Г. Михлина (3), который обобщил 
для любых линейных операторов некоторые предложения Ф. Нетера, 
относящиеся к теории одномерных сингулярных интегральных урав­
нений (3,5).
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Говорят, что линейный оператор А допускает регуляризацию, если 
существует линейный оператор М такой, что МА = Е + Т, где Е — 
тождественный оператор.

Теорема С. Г. Михлина. Если оператор А допускает регу­
ляризацию, то:

а) уравнение Дq) = О имеет конечное число решений;
Р) оператор А нормально разрешим;
у) при условии (дополнительно), что уравнение Д’ф = 0 имеет 

конечное число решений, разность между числом решений уравне­
ний Аср = 0 и числом решений Д’ф = 0 не меняется от прибавле­
ния к А вполне непрерывного оператора.

В предлагаемой работе устанавливаются необходимые и достаточ­
ные условия, при которых оператор А удовлетворяет свойствам а) и Р).

§2. Лемма 1. Если оператор А нормально разрешим, то образы 
операторов А и АА’, а также А*  и А*  А совпадают.

* Говорят, что оператор А допускает эквивалентную регуляризацию, если суще­
ствует такой линейный оператор М, что МА = Е + Г, где Т — вполне непрерывный 
оператор, и уравнения NA^ = Nf, Aq=t эквивалентны при любом f.

Пусть оператор А нормально разрешим, La и L* a суть образы опе­
раторов А и Д’. Очевидно, LAa*̂L a- С другой стороны, если J^La, 
то существует решение <рх уравнения /=Д^, ортогональное к под­
пространству решений уравнения Д9 — 0; но тогда, вследствие нор­
мальной разрешимости А*,  вытекающей по теореме Хаусдорфа (4) из 
нормальной разрешимости А, уравнение q^ = А*(р  имеет решение <р2. 
Отсюда/=ДД^2 и f^LAA*-  Этим доказано, что Ад и Laa* совпадают. 
С другой стороны, из нормальной разрешимости А следует нормаль­
ная разрешимость Д’; тогда, рассуждая аналогично, получим, что 
La* = Laa*-

Следствие 1. Из нормальной разрешимости оператора А выте­
кает нормальная разрешимость операторов ДД*  и Д’Д.

Теорема 1. Следующие предложения эквивалентны:
1. Для линейного оператора А имеют место утверждения 

а) и Р).
2. Оператор А допускает регуляризацию.
3. Оператор Д’Д удовлетворяет условию N.
Свойство 1 влечет за с об о й с в о й с т в о 3. Действительно, 

пусть для оператора А имеет место свойство 1, тогда уравнение 
Д’Дф = 0 имеет конечное число решений, так как оно эквивалентно 
уравнению Др = 0 ((3), § 6, теорема 2). Оператор нормально разрешим 
(следствие 1) и самосопряженный, следовательно, по теореме С. М. Ни­
кольского, оператор Д’Д удовлетворяет условию N.

Свойство 3 влечет за собой свойство 2. Пусть 
Д’Д — В + Т, тогда регуляризирующим оператором для А является 
оператор В1 А’: (В^А') А — Е + Т.

Из свойства 2 следует свойство 1. По теореме С. Г. Мих­
лина, если оператор допускает регуляризацию, то он удовлетворяет 
утверждениям а) и (3)-

Теорема 2. Следующие предложения эквивалентны:
1. Для линейных операторов А и Д’ имеют место утвержде­

ния а) и [3).
2. Один из операторов А или Д’ допускает эквивалентную регу­

ляризацию .*
Из свойства 1 следует свойство 2. Пусть фр q>2,..., ф*  — 

ортогональная нормированная система решений уравнения Дф = 0; 
ф1; ф2, ...,ф* —ортогональная нормированная система решений урав­
нения Д’ф = 0. Обозначим k— Е = к и пусть х^О.
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k'
Рассмотрим оператор Рф = Д*ф-г 2 (ф> Ф')®'’ х равнение Ру О 

«=1
имеет единственное нулевое решение. „П!,оирПИЯ

Действительно, во-первых, пусть у0 есть решение ур 
Р^ = 0. Умножим обе части скалярно на ф, (/=1,2........к ), тогда.

(Рфо- ф7) = (Д* ф0; фу) + 2 (?о> ФО 'РО = (фо> ФА
І=1

замечая, что Рф0 — 0, получим (ф0, фу) = 0 и, значит, Д’ф0 = 0.
Следовательно, если ф0 есть решение уравнения Рф = 0, то оно 

является решением уравнения Д*ф = 0. Значит, все решения уравне­
ния Рф = О являются решениями уравнения Д*ф = 0, т. е. ф0 есть ли­
нейная комбинация решений ф, уравнения Д*ф = 0.

Во-вторых, мы видим, что (фо, фД = 0 для всех фу, откуда следует, 
что ф0 — 0.

Л*

Оператор РАр = А* Ар = 2 Иф> ФО Ф/ = А*Ау.
і=і

Оператор А* А удовлетворяет условию /V, т. е. А*А представим в 
виде суммы двух операторов А*А = В + Т, из которых В — обратимый 
и Г—вполне непрерывный (теорема 1).

Оператор А допускает эквивалентную регуляризацию, так как опе­
ратор В1Р является эквивалентно регуляризирующим для А* ((3), 
§ 6, лемма 1).

Этим и завершается доказательство теоремы. В случае 0 можно 
аналогичным образом показать, что оператор А* допускает эквива­
лентную регуляризацию.

Из свойства 2 следует свойство 1. В самом деле, если 
оператор А допускает эквивалентную регуляризацию, то, как показал 
С. Г. Михлин, для этого оператора имеют место а) и ₽) и число ре­
шений однородного уравнения Аф = 0 меньше числа решений урав­
нения Ар =0. Учитывая, что оператор А нормально разрешим вместе 
с оператором А*, мы приходим к выводу, что для обоих операторов 
А и А* имеют место первые две теоремы Нетера.

Следствие. Если для линейного оператора А имеет место хоть 
одно из утверждений теоремы 2, то для него имеет место также 
свойство у.

Действительно, если для А имеет место свойство 2 теоремы 2, 
то один из операторов А или А* допускает эквивалентную регуляри­
зацию и уравнения Л<р = О и Аф = 0 имеют конечное число решений, 
значит, к А применима теорема 3 § 7 (3).

Замечание. Существует оператор Д1( удовлетворяющий свой­
ствам а) и Р) и такой, что уравнение А* ф = 0 имеет бесконечное число 
решений.

Пусть для простоты Н сепарабельно и гъ г2,..., г,„его орто­
гональный нормированный базис. Определим оператор Аг следующим

/ оэ \ СО

Аф = А! 2 (я?» п) г, ) = 2 (ф. и) г21,
м=і / (=і

ОО

А Ф = 2 (Ф, r2f) г{.
1=1
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Нетрудно видеть, что для Аг имеют место утверждения а) и Р). 
Уравнение же А* ф = 0 имеет бесконечное число решений, так как его 
решениями являются элементы Гу—ь

Поступило
13 X1950
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