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МАТЕМАТИЧЕСКАЯ ФИЗИКА

А. Б. ДАЦЕВ

О ЛИНЕЙНОЙ ЗАДАЧЕ СТЕФАНА - СЛУЧАЙ ЧЕРЕДУЮЩИХСЯ ФАЗ

(Представлено академиком С. И. Вавиловым 12 X 1950)

В этой работе решена общая задача Стефана (задача замерзания) — 
случай, когда чередуется произвольное число твердых и жидких фаз 
одного тела, например, вода — лед или влажная почва, в которой 
существуют замерзшие слои. При двух фазах конечной толщины 
Zj и /2 решение этой задачи впервые дано Л. И. Рубинштейном (’ф 
Пользуясь иным методом, мы дали в (2) короткое изложение, а в (3) — 
более полное решение линейной задачи для случая 1^ = /2 = оо и 
в (4)— решение для случая конечных толщин Е и 12. Примененный 
в (2,4) метод используем и теперь (в работах (1-4) указана и другая 
литература по вопросу).

Рассмотрим плоские однородные касающиеся слои Ah (h = 1, 2,..., г), 
представляющие твердую и жидкую фазы одного тела, чередующиеся 
между собой. Пусть ось ОХ нормальна к их плоскостям соприкосно­
вения, которые пересекают ОХ в точках О0, Оъ ... , Ог. Слой Ал тол­
щиной К (h= 2, ... , г) определяется вполне точками Ол-і (х^1)
и Ол(хй), lh—xh — Примем, что г нечетно и Аь А3, ... , Аг пред­
ставляют твердую фазу, а А2, А4, ... , Ar-i — жидкую, но, конечно, 
данное ниже решение одинаково приложимо для г четного или дру­
гого произвольного выбора фаз АТ и Аг. Пусть kh (соответственно ан) — 
коэффициент теплопроводности (соответственно температуропровод­
ности) слоя Ал, причем полагаем k1 — k3 — ... = kr, k2 = kt =... — kr—x, 
а1 = а3 — ... Абсцисса точки Он меняется, мы ее обозначим (Z), при 
sh (^о) = xh = Хо, а температуры точек Оь ... , Or-i постоянные, равные 
<р0 (температуры плавления, нуль для случая вода — лед). Пусть 
и'1 (х, t) — температура слоя АЛ. uh удовлетворяет уравнению

d2 uh диь ц. л п \ /1 ,а^-дГ--дГ 2« ••• ’ W

и начальным условиям
uh (х, Zo) = Фй (х) (хй‘4 < х < Xй). (2)

В точках О2, ..., Or—i имеем условия постоянства температур 
и1 [s1 (t), t]=u* [s1 (t), t]=u* [s2 (0, Z]= ... = W [sr~\t), Z]=% (Z>Z0). (3)

Функции u2, ... , удовлетворяют условиям на концах (3), 
a w1 и и/— условиям (3) и условиям в точках О0 и Он

и1 (х°, t) = <р(0>Фо, ur (xr, t) = ф (Z) > <p0 (Z>Z0); (З')
Фй, 9, ф— ограниченные интегрируемые функции своих аргументов.
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В точках Оъ ... , Or-i выполняются еще условия Стефана

dsh /, duh , ди^1 \ ., , „
^dT = \kh-d^~k^~dT)x=sh^ (Л = 1, 2, ... , г—1). (4)

Рассматриваемая здесь задача Стефана состоит в следующем:
Найти ф у н к ц и и и1 (х Д), ... , цг (%, t), s1 (t), ... , s'-1 (t), удов­

летворяющие (1), (2), (3), (З'), (4).
Разобьем интервал (£0, t0 + Т), в котором изучаем процесс, на п 

частей, соответствующих моментам

^о, > • • ■ , 61—1> tn = t0 + Т, Ati = t^i — .(I = 0, 1, ... , n — 1)

Рассмотрим процесс, при котором температурная функция uh удов­
летворяет (1), имеет начальное значение Фй(х) и значения на концах, 
определенные из (3) и (З') по данным кривым ch = x = sh(t) и 
ch+l = х = s^1 (6 в плоскости (х, t), sh (^0) = xh, sh+l (t0) = x^1. Эта 
задача решена в (5). Здесь, как в (2~4), даем другое, более подходя­
щее решение. Для этого заменяем данную кривую sh(t) ломаной 
s’in (t), состоящей из сегментов, параллельных последовательно осям 
X и t, именно: сегментов [sft(6), 6] — [$й(6), 6+i], параллельных оси t, 
и сегментов [«й (6), 6+i] — [sft (6+i), 6+iL параллельных оси х. Функцию 
ий(х, t) в интервале Д6 обозначим через Uin(x,t), 
s11-1 (ti)<Zx<.sh (tt). Она будет решением (1) при начальных условиях 
(2) и условиях на концах (3) или (З'). Она представится, как в (2“4) 
или (е), в виде 

и^п(х, t) — V?n(x, t) + Win(x, t) (A = 1, ... , r; z = 0, 1, ... , n—1), (5)' 

где
ft лі

V?n(x, t) = 5 Г?(хЛ^Ф?©< Фж(х) = и?(х, 6+i>

“hl 1

«ft(*“6) \ n Л+5—1
----- Б-----  I  «Я ------—-------  

У e-^m, 
К rd

(6)

(7)

и положено

ф} = ф(0> Ф^ = ф’ = Ф^ = --- = ф; = Фо’ Фг = Ф(О- (7')

Формулы (5), (6), (7) для i — 0 определяют функцию иоп(х, t) 
(xh~x <Zx<xh, ^), так как функции Фо (х) = Фй (х) известны.
Имея в виду рассмотренный процесс, где кривая sh (t) заменена кривой 
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ПОПРАВКА К СТАТЬЕ А. Б. ДАЦЕВА

В формулах (4), (8) и (9) пропущен численный множитель е = (—1)й+' ' Ра> ™ 
р_плотность, о — удельная теплота.

Эти формулы следует читать так:

dt \ п дх

dsnn L д1_Р1 = е kh — dt \п с

= sk ’

.ь , , (Л = 1,2,...,
й+’ дх Jx=sh(t)

lPn — k dupn \ (/ </</ ,

x-spn{tP’

1 eh \ ГЛ дх Л+1 дх )



Sm (t), получаем Ф? (x) = non (x, tj). Формулы (5), (6), (7) для i = 1 о пре. 
деляют также функции ц?я(х, 7) (7і<7^72), затем U2n(x, t) (72<7^73) 
и т. д. все uin(x,t) (i = 0, 1, ••• , п — 1). Граничный переход п->оо 
осуществляется так же, как в (4). Легко установить, как и в (4), что 
последовательность функций и^п ограничена для каждого п. Так же 
как в (4) устанавливается, что когда ломаная стремится к своему 
пределу s" (t), последовательности функций стремятся к пределам 
uh (х, t), которые удовлетворяют уравнениям (1) для 70<7<70+7', 
s" (t)<x<s^(t).

Теперь вернемся к задаче Стефана, определенной (1) —(4). Рас­
смотрим в интервале (tp, tP+() (р=0, 1, ... , n—1) следующие усло­
вия, заменяющие условия Стефана (4):

^п

<и ktih дх ■ дх /
х—spn

(8)— Ал+і (tp ^р+і)'

Для 7О<7<71 определим функции и(п(х, t), удовлетворяющие (1), 
(2), (3), (З'), т. е. функции, данные (5), (6), (7) для і = 0. Условия (8), 
правая часть которых известная функция t, определяют для р = 0 
функции Son (7), следовательно, и их значения Son(7x) через s'on (70) = xh- 
После замещения этих значений $ол(7і) и функции ufn(x, t) (5) для 
г=1, эти последние будут вполне определены в интервале 71<7<С72. 
Уравнения (8) для р = 1 определяют функции s'}n(t) (7і-<7<72), т- е- 
значения s?n (72), и т. д., откуда получим для каждого t ^+ь
1 = 0, 1, ..., п — 1) функции и?п(х, t) (h=i,..., г) и (t) (A=l, ..., г—1). 
Когда число интервалов п->оо и все Д^->0 одновременно, очевидно, 
условия (8) превратятся в условия Стефана (4), а для функций 
sin (7 = 0, 1, ... , п—1) получим, интегрируя (8) по t и суммируя 
полученные уравнения для р = 0, 1, ... , i — 1,

/ ди" ди^1 \«м (7/+i) = sA (70) + 3 \ ( Ал — Ал+і ,1 dt. (9) 
tp J x=spn Vp)

Доказательство существования пределов u1, ... , ur, s1, ... , sr 1 
последовательностей uk, ... , s^1 аналогично данному в (4). Это выте­
кает из следующей теоремы, доказанной в (3) и использованной в (4). 
Пусть фаза Ah простирается по ОХ от точки Oh (sh = xh) до точки 
Ол+і (s^1 = хл+’) при начальной температуре ФА (х). Пусть u? (х, t) — 
решение уравнения (1) при начальной температуре ФЛ(х) и темпера­
турах на концах % и <р(7), соответственно, по данным кривым Si(t) 
и s"+1 (t), где s? (70) = xh, sh+x (t^ = xh+\ и a? (x, t) — решение (1) при 
той же начальной температуре Ф/г(х) и температурах на концах <р0 и 
<Р (7), соответственно, по данным кривым s2 (7) и sA+1 (7), где s2 (70)=хА. 
Обозначим через Qhi (7) и (?) количества тепла, полученные с конца 
Oh, данные криволинейными интегралами по sj и s2:

С (ди\ > , Г (ди" \QhAt) = Ал\ (^) h dt, Qh2(t) = kh\[-^} dt. (10) 
t„ 4 x—S1 (/> t, x=«2 (0
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Тогда, если около тбчек Oh имеем одно из неравенств 
то будем иметь соответствующее неравенство

QmWsQmW (И)
для достаточно малых значений t— ^0.

Из этой теоремы следует, что задача Стефана (1)—(4) не может 
иметь более одного решения. Действительно, допустим, что в качестве 
решения задачи имеем две системы функций: s1^), ... , sr~x (£), 
и\ (х, t), ... , ul (х, t) и а1 (^), ... , аг—І (t), «2 (х, ... , (%, t) и примем,
что около точек О^, например, sh (t) < ch (t). Напишем условия (4) для 
первой и второй систем функций, интегрируем их по t и вычтем 
почленно полученные равенства. Тогда из неравенства (11) получим, 
как в (4), sh (?)< ah (0, т. е. sh (t) = (t), или, другими словами, задача 
не может иметь более одного решения для t—10 достаточно малого. 
Доказывается, как в (3,4), что это имеет также место для каждого 
конечного интервала t — t0. Из неравенства (И) следует также, что 
последовательности Si„, ... , s^1 и и}п, ... , достигают своих пре­
делов. Случай, когда одна из промежуточных фаз исчезает, рассмат­
ривается непосредственно и не вызывает затруднений, но случай появ­
ления фазы (например, появления льда при охлаждении водяного 
Слоя с одной стороны) не может рассматриваться непосредственно 
изложенным методом и нуждается в дополнительных исследованиях. 
Если одна из фаз в концах, например Аь имеет бесконечную толщину, 
1г = оо, то, полагая /t=oo в (5), получим непосредственно этот слу­
чай, Таким образом получим и случай, когда одновременно /х = оо^ 
1Г = оо, полагая в найденных выше формулах 1г — 1г = оо.

Поступило 
18 VII 1950
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