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Подобно тому, как хаотическое молекулярное движение характе­
ризуется температурой и длиной свободного пробега молекул, турбу­
лентность можно достаточно полно охарактеризовать ее интенсив­
ностью (средней кинетической энергией) и масштабом, т. е. 
характеристикой размерности длины, пропорциональной как пути 
перемешивания (среднему расстоянию, на которое способны переме­
щаться турбулентные образования, сохраняя свою индивидуальность), 
так и средним размерам турбулентных образований. Турбулентность 
может характеризоваться различными масштабами по разным направ­
лениям, так как геометрические границы потоков и наличие массовых 
сил создают неравноправие различных направлений по отношению 
к возможности возникновения турбулентных образований определен­
ных размеров и к перемещению турбулентных образований. Поэтому в 
каждой точке потока должен быть определен некоторый эллипсоид 
масштабов.

Идея характеризовать турбулентность ее энергией и тензором 
масштабов неоднократно высказывалась А. Н. Колмогоровым. Ниже 
мы предлагаем естественный путь введения этих характеристик, исходя 
от введенного еще Рейнольдсом тензора добавочных напряжений.

Пусть П и Ф обозначают, соответственно, тензор добавочных 
напряжений и тензор скоростей деформации осредненного поля. Ком­
поненты этих тензоров в декартовой системе координат Xi имеют вид

--------  dv,, dV: 9 dv„
(1)

где р — плотность среды, vi и — компоненты осредненной скорости 
и пульсации скорости, 8ц — компоненты единичного тензора I, п — раз­
мерность потока (га = 2 или 3), черточка сверху означает осреднение, 
по повторяющимся греческим индексам подразумевается суммирование.

След тензора П равен удвоенной кинетической энергии турбулент­
ности: р'Уд'Уд = 2рЬ, где b — энергия турбулентности в единице массы. 
Добавочные напряжения П зависят от поля осредненной скорости. 
Если оно однородно, т. е. жидкие частицы в среднем движении 
не деформируются (Ф = 0), то напряжения П для каждого элемента 
поверхности в жидкости направлены по нормали к этому элементу, 
так что тензор П изотропен: П = £1. При этом, очевидно, 

1 2 - —k — — Пав = — pb. Таким образом, турбулентная энергия pb аналогич­
на давлению.
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При неоднородном поле осредненной скорости тензор П уже ани­
зотропен и должен зависеть от производных скорости по координатам. 
Если эти производные невелики, такую зависимость можно считать 
линейной, так что П будет линейной функцией от Ф, коэффициенты 
которой будут иметь смысл коэффициентов виртуальной вязкости.

Опыт показывает, что турбулентная среда по различным направле­
ниям характеризуется, вообще говоря, различными значениями коэф­
фициента вязкости (что приводит к различным скоростям диффузии 
примесей). Поэтому естественно считать, что коэффициенты виртуаль­
ной вязкости образуют симметричный тензор второго ранга. Обозна­
чим его М. Тогда, поскольку тензор П симметричен, следует положить 
П = Я - Ч2 (МФ + ФМ). Анизотропность тензора М может иметь лишь 
те же причины, что и анизотропность тензора масштабов L, так что 
коэффициент виртуальной вязкости Мгг по данному направлению г 
следует считать пропорциональным масштабу турбулентности Lrr по 
этому направлению. Из соображений размерности М = p/C’L.

Таким образом, положим

П = - А pb'1' (ЬФ + ФЕ). (2)

Если выражение (2) может быть однозначно разрешено относи­
тельно L, то оно будет просто определением новой характеристики 
турбулентности L взамен тензора П. Для этого достаточно, чтобы 
детерминант шести уравнений (2) относительно шести компонент тен­
зора L был отличен от нуля. Этот детерминант легко вычислить 
в системе координат, в которой тензор Ф имеет диагональный вид.

Будем обозначать компоненты тензоров II, L, Ф и вектора ско­
рости v в этой системе координат через тгц, hj, и Тогда урав­
нения (2) перепишутся в виде

hi (4 ’
и, поскольку след тензора Ф равен нулю, легко видеть, что детер­
минант системы равен

±^^^ = ±(061®^.

Таким образом, мы должны требовать, чтобы тензор Ф не вырож­
дался. При этом условии выражение (2) не будет содержать никаких 
гипотез, а рассуждения, имевшие эвристическое значение при состав­
лении выражения (2), будут служить лишь для физической интер­
претации величин L и М = pb /sL.

Смысл условия Det Ф =^0 легко выяснить в случае п = 2. В декар­
товых координатах

/ dv, dv; dv„ _ dVi
dxt дх2

— ' 2civ, , ду2 |
дх2 ' дхх /

Согласно известной формуле Стокса, это выражение с точностью 
до множителя совпадает с диссипацией механической энергии в теп­
лоту, и Ве1Ф = 0 означает, что энергия среднего движения непосред- 

_ дух dv,ственно в теплоту не диссипируется. При этом и
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= _ , так что = 0. В случае несжимаемого движения это
•означает, что — ах2 + const, v2 = — aXi + const, т. e. среда дви­
жется как твердое тело. В дальнейшем мы предполагаем, что 
DetO=#0.

Из формулы (2) следует, что след тензора ЬФ + ФЬ равен нулю, 
что является единственным условием, связывающим L непосредствен­
но с полем осредненной скорости, минуя другие характеристики тур­
булентности. Это условие заведомо выполняется, если тензор L изо­
тропен (L =/1).

Смысл этого условия при анизотропности тензора L поясним для 
случая п = 2: Zu<pu + /22?22 = ° вместе с <рп + <?22 = 0 означает, что 
Zu = Z22, т. е. что главные направления тензоров L и Ф образуют друг 
с другом углы в 45°. Главные же направления тензора Ф просто опре­
деляются по полю скорости. Именно, собственные значения тензора Ф 
равны ilDet®!1/* (см. формулу (3)), и соответствующие главные 
направления образуют с осью хг декартовой системы координат углы <р, 
•определяемые равенством

tg? =

± | Det Ф !*/■ — f 
_________ \ dxt дхг /

дуг + ду2 
дхг Охг

(4)

Из формулы (2) следует также, что главные направления тензо­
ров П и ЬФ + ФЬ совпадают, так как эти тензоры одновременно 
приводятся к диагональному виду. При п = 2 главные направления 
тензоров П и ЬФ + ФЬ совпадают с главными направлениями тензо­
ра Ф, так как вследствие равенства нулю следа тензора Ф при i =/= j 
имеем Іц (<р« + <р^) = 0. Поэтому при п = 2 главные направления тен­
зора II также определяются формулой (4).

Главные значения тензора П легко вычислить в той системе коор­
динат, в которой тензор Ф диагоналей; они равны

= ?Ь—рб’ЧгРи, = ?b'+ (5)

так как Zu = Z22 и <рп = — <р22.
Формулы (5) показывают, что тензор П при Det Ф =Z= 0 анизотропен, 

независимо от анизотропности тензора L, причем большая полуось 
квадрики тензора П соответствует тому главному направлению, кото­
рое связано с отрицательным собственным значением тензора Ф (знак 
минус в формуле (4)). Под квадрикой мы подразумеваем здесь поверх­
ность, определяемую уравнением (ІГЛ, ГНг) = 1.

В качестве примера рассмотрим плоское движение, параллельное 
оси %! декартовой системы координат (т2 = 0) и однородное в направ­
лении этойоси (dvjdxt = 0). В этом примере направления хь х2 суть 
направления главных диаметров эллипса, являющегося квадрикой тен­
зора L, и направления асимптот гиперболы, являющейся квадрикой 
тензора Ф. Главные диаметры эллипса, являющегося квадрикой тен­
зора П, образуют с осями xv х2 углы в 45°, причем большая полуось 
образует с осью хг угол % определяемый равенством tg <р = 
= — sign (dvjdxz). Легко видеть, что такое направление наиболее 
интенсивных пульсаций скорости способствует выравниванию поля 
скорости, а при наличии шероховатой стенки ОХг приводит к тормо­
жению движения.
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Таким образом, следствия предложенной формулы (2) полностью 
соответствуют существующим эмпирическим представлениям о струк­
туре анизотропной турбулентности. Формула (2) не является дополни­
тельным уравнением в теории турбулентности. Она лишь позволяет 
заменить характеристику П более наглядной геометрической характе­
ристикой L. Для определения величин b и L одновременно с распре­
делением скорости необходимо построение дополнительных уравнений. 
Уравнения для определения b уже неоднократно предлагались в ряде 
работ Р-8).
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