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Одним из авторов ранее (J) было качественно показано, что наряду 
с электромагнитным и мезонным должно также существовать грави­
тационное лучистое трение, которое следует учитывать в уравнениях 
движения отдельной частицы. Развивая указанные соображения, мы 
подсчитали в рамках классической теории торможение, вызываемое 
излучением гравитационных волн, для точечной частицы в приближе­
нии, которое можно назвать в выясненном ниже смысле полуреляти- 
вистским. Проведение подобного расчета представляет интерес для 
общей теории полей и частиц.

В качестве уравнения движения частицы берется уравнение геоде­
зической линии в пространстве, искривленном собственным гравита­
ционным полем. Это поле считается слабым, допускающим использо­
вание уравнений Эйнштейна в линейном приближении; рассмотрение 
ведется в геодезической нормальной системе координат с началом, 
совпадающим с положением частицы в некоторый момент. Допусти­
мость этих предпосылок для реализуемых случаев будет рассмотрена 
ниже.

Малые добавки h^x) к галилеевым значениям метрического тен­
зора определяются уравнениями

□ = (1)

где Ар=фр— 1/г^Фг, с нормировочным условием типа Гильберта — 
Лоренца / дхл — 0 (по одинаковым индексам производится сум­
мирование).

При этом t* полагаются равными тензору энергии:

^р = тос~иаи& у 1 — ~ S(xY — Xi (t)), 
*

где Д W — координата частицы, т0— собственная масса, А — ньюто­
новская гравитационная постоянная, иа = dx* [ ids и

ds2 = — dx^ 4- dx12 4- dx22 4- dx32 4- Aap dxa dx&.

Как видно из рассмотрения используемого ниже решения (3), 
•благодаря особенностям данной задачи мы можем не включать в 
нашем приближении в уравнения, определяющие пространственные
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компоненты фр, квадратов производных от гравитационных потенциа­
лов (см., например, (2).

Вместо того, чтобы исходить только из уравнений поля, мы исполь­
зовали в правой части (1) выражение, взятое из специальной теории 
относительности. Это представляет собой применение своеобразного 
последовательного приближения, которое оказывается пригодным, так 
как мы ведем рассмотрение в пространстве, мало отличающемся от 
псевдоевклидова.

По этой же причине мы можем вообще говорить о слабом 
гравитационном поле, а также приближенно вводить понятие вектора 
в его обычном смысле, придавать х1, х2, х3 значение про­
странственных декартовых координат и t = x3jc значение времени. 
Метод последовательных приближений применялся раньше (2“4) с бо­
лее общей целью получения уравнений движения системы типа ньюто­
новских из уравнений гравитационного поля.

Обоснование выбора в римановом пространстве общей теории отно­
сительности геодезической нормальной системы координат с галилеевы­
ми значениями метрического тензора ga^x^ при х^ = 0, которая, как мы 
считаем, более всего приближается к лоренцевой системе отсчета, было 
указано Биркхофом (6). Как это следует уже из геометрического смысла 
геодезических координат, используемое нами приближение будет вер­
ным, если частица не выйдет за время наблюдения из ограниченной обла­
сти трехмерного пространства. Условия малости добавок Аар (%) к gap(0) при 
хт=^0,аследовательно, и условия малости гравитационных эффектов запи­
шутся в виде неравенств R^l2< 1, где R^ — тензор Риччи, а I — ли­
нейный размер рассматриваемой части трехмерного пространства. 
Приведенное неравенство следует уже из соображений размерности; 
его можно получить, рассмотрев разложение ga»(x) в ряд Маклорена. 

•Так как наибольшее из значений Ra$ по порядку величины равно 
k , kp

где р — плотность массы, то наше условие можно пере­
писать так:

Для элементарных частиц имеет некоторый смысл в духе 
полевой теории массы заменить р через т / rg, где rg так назы­
ваемый гравитационный радиус. Характерно, что в последнем случае 
особенно ясно выступает необходимость проведения при окончатель­
ном рассмотрении квантовомеханической трактовки.

Как нетрудно видеть, любое решение (1) фр(х) может быть изме­
нено прибавлением выражения вида — А^х7 — фр (0), где Лрт и фр (0) —
постоянные в данной системе координат величины, подобранные так, 

dh%
чтобы =0 и Лр(0) = 0. Очевидно, что эти дополнительные сла­

о
гаемые не нарушат нормировочного условия. Таким образом, мы дей­
ствительно можем вести расчет в нормальной системе координат и 
пользоваться решениями уравнений (1). В наших последующих вы­
числениях члены с Лру х и фр(О) уничтожатся, и поэтому для сокра­
щения в дальнейшем они не учитываются.

После несложных преобразований из уравнения геодезической 
линии:

д*х‘ _ _r * dx* tl^SjdP dx-
д*2 dt dt + ds;dt ~dt ’

0 —__ p'\ dxa dx^ d2s I dP
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получаем с принятой точностью уравнение движения:

d2r I dh0
m^P=-m^\Tdt

0^/1 ddi
+ 2 с к 2 dt

1 а 1 , 1 f dh00 I— у grad й00 + уr

1 . , , v dhol
2^ + ^^

1 7p / V ^ii1 d&n;
T graded- c dt (2)

Греческие индексы пробегают значения О, 1, 2, 3, латинские — зна­
чения 1, 2, 3. Для сокращения использована символика трехмерного 
векторного анализа и введено обозначение ha = 1і!леі, где ві— по­
стоянные величины, которые можно приближенно интерпретировать 
как трехмерные орты.

Таким образом, теперь, как и в аналогичной задаче электродина­
мики, мы обладаем уравнением движения (2) и волновыми уравне­
ниями (1) для потенциалов собственного поля частицы. Используя 
упомянутую аналогию, следует взять, подобно соответствующему 
расчету Лоренца, для подстановки в (2) решение уравнений (1) в виде 
запаздывающих потенциалов (выполнимость нормировочного условия 
была ранее показана Эйнштейном), разложить по 1 / с и отбросить 
расходящиеся члены, связанные с полевой гравитационной массой.

Вычисление несколько упрощается тем, что, как следует уже из 
качественных соображений, в выражение для силы гравитационного 

1 1 1 лучистого трения должны входить только члены с 

где п— целое число.
Более просто тот же конечный результат получается методом 

Вентцеля — Дирака — Соколова (8), использовавших полуразность опе­
режающих и запаздывающих электромагнитных потенциалов, что авто­
матически исключает расходящиеся члены в разложении по 1/с.

Применяя этот метод электродинамики для гравитации, берем:

« = '+4 W -'-4)}

+s4 414‘(“"“в+т 4 ]+• ■■}■ (3)
Здесь R=\r— G(OI> где r± (t) — текущий радиус-вектор части­

цы. После подстановки йр в (2), где можно положить R=0 = — v (t),
получаем искомое уравнение

_  9
dv , л т0^

т0~^Г = — И --- а~0 di С3
1 d2v . 1 Vs d2 у 1 /— dv\ dv
3 ~dP '6 c2 Up + V dT) It + ' ’'

Здесь не записаны члены, содержащие 1 / с1 или высшие степени 
1 / с, что побуждает назвать расчет полурелятивистским.

Если частица движется без ускорения, то полученное выражение 
после усреднения по времени не приводит к излучению энергии, так
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как сводится к полным производным; так например, v = 
1 d^v f du

= 2di?+\dtr Появление в выражении для излучения энергии то- 
ч 1 dv , пчечнои частицей члена с ~3~ при не противоречит известной

формуле для излучения гравитационной энергии системой, в которой 
содержится лишь квадрупольный член, пропорциональный 1 / с5. Как 
и в случае излучения электромагнитной энергии движущимся элек­
троном, возникновение при ускорении дипольного члена, пропорцио­
нального 1 / с3, связано с тем, что разложение на дипольные, квадру­
польные и т. д. слагаемые не является инвариантным. Однако следует 
отметить существенное обстоятельство: если сразу интегрировать 
уравнение движения точки-частицы с силой торможения, то появляются 
решения с dv f dt=/=O. Иначе, факт наличия собственного гравитацион­
ного поля вновь ставит вопрос — возможно ли в принципе, в рамках 
общей теории относительности, выбрать систему отсчета, в которой 
ускорение тела равнялось бы нулю при скорости •у^О. Ситуация здесь 
полностью аналогична проблеме самоускоряющегося в классической 
теории электрона Дирака.

В заключение отметим, что наш подход к задачам гравитации, 
основанный на уравнениях слабого поля, позволяет поставить также 
еще ряд задач, как например, проблему гравитационного вакуума. 
С другой стороны, общая нелинейная теория гравитационного поля 
также должна привести к соответствующей силе лучистого трения.

Московский государственный университет Поступило
им. М. В. Ломоносова 17 VII 1950
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