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МАТЕМАТИКА

В. В. РЫЖКОВ

ТЕОРЕМА ВЛОЖЕНИЯ ДЛЯ РИМАНОВЫХ ГЕОМЕТРИЙ 
ВЫСШИХ ПОРЯДКОВ

(Представлено академиком И. Г. Петровским 23 IX 1950)

Две «-мерные поверхности x = x(iii) и y—y(ut), i = 1, 2,...,«, 
в Rn допускают метрическое наложение первого порядка в точечном 
соответствии, установленном отнесением обеих поверхностей к одной 
и той же системе параметров щ, в том и только том случае, если 
соответствие это изометрическое, т. е. в случае совпадения форм 
«j — dx2 и W] = dy2-

Требование метрической наложимости порядка k равносильно тре­
бованию выполнения равенств

д 1 пх д 1 пх _ д 1 пу д 1 пу ,..
, а , а„ В В„ - а , а„ , В , Вп ’ * '
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которые, однако, не все независимы.
Для выполнения соотношений (1) достаточно, чтобы формы = (dsx)2 

и = (d'y)2 были попарно равны при s = 1, 2,..k. Таким образом, 
заданием форм us, s = 1, 2, определяется дифференциальная
геометрия поверхности до порядка k. Все произведения в левых 
частях равенств (1) определяются заданием форм a>s = (dsx)2.

Можно рассматривать систему дифференциальных форм абстракт­
но, т. е. вне зависимости от порождающей их поверхности; можно гово­
рить, что эти формы определяют риманову геометрию порядка k (4).

Как известно (2-4), при условии положительной определенности 
квадратичная форма с аналитическими коэффициентами, определяю­
щая риманову геометрию, может всегда быть получена как метри­
ческая форма dx2 некоторой поверхности в евклидовом пространстве 
не более чем —” + измерений. Произвол, с которым осуществляется 
такое вложение, определяется в п функций («— 1) аргументов.

В настоящей заметке мы рассматриваем аналогичную задачу вло­
жения для римановой геометрии произвольного порядка k.

В § 1 приводятся основные уравнения задачи, в § 2 формули­
руется теорема вложения с указанием размерности пространства и 
степени произвола, а также указывается на возможность вложения 
в пространство постоянной положительной кривизны.
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§ 1. Пусть Ms(ui, dui) — дифференциальные формы степеней, рав­
ных 2s, соответственно, с аналитическими коэффициентами. Основные 
уравнения задачи погружения имеют вид:

(<Гх)2 - = О, s = 1, 2, (2)

где размерность пространства, вмещающего х(щ), нет необходимости 
заранее определять. Ограничения, налагаемые на формы us в связи 
с требованием вещественности искомой поверхности (условия поло­
жительности), формулируются ниже.

Пусть dUi и 8Х = +•.. + dun — символы диффе­
ренцирования по их и при Hj постоянном, соответственно. Введем 
обозначения:

^"p‘ = dsrp^pdx dsrp‘8pi‘x, 0<Pn Pz<s; (3l)
mln (s, r)

& = 2 C^C^s’r~x, 0<r<2s; (32)
a=max (0, r—s)

4s

Q,=2 S = 1, 2,..., k. (33)
i г=Э

Система (2) приводится теперь к виду

— wj = О, ОО -С 2s, 1 s (4)

где — формы однородные степени 2s — г относительно du^ такие, 
2s

что м5 = 2
г=3

Образуем, далее, выражения

^p'^8^’p'-d181QpP+i’p’ - +d№+'’p‘+' =
= 2Q^V ’P,+1 - ОДў’ р‘ - (5)

Тогда

(6) 
a=;

и (З2) совместно с (6) определяет формы единственным образом. 
Система (4) теперь преобразуется к виду

&р-^р = 0, l<s<*-l, 0<p<s;

= 0OiO2O,
с присоединением'следующих условий, относящихся к начальному 
значению ил = н?:

4 !0-^’4 = 0, l<p<?<s,
(8)

d^’410 - d^p'410 = 0, l<s<£- 1.

В уравнениях (7) и (8) через 9 обозначены формы, получаемые из 
форм так же, как формы Q?’9 получаются из форм П* т. е. из 
уравнений вида (6) и (З2).
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Посредством ряда дальнейших дифференцирований можно привести 
уравнения (7) к следующей форме:

(/?xdf8?x+...= 0, 0<?<2£, (9)

где члены, замененные многоточием, содержат производные не выше 
2А-го порядка, а производные по только до порядка 2k — 1.

Полагая х|о = Хо» мы должны будем присоединять сле-
о дующие дополнительные уравнения при = «ц

(8f^)2 + ... = О, — 1, ККА-/; (Ю1)

^3^ + ... = 0, 1<Z<2£-1, 0<;<7-1, 1<р<2^-2у; (102)

^^ + ... = 0, 1</<2й—1, 1 <y<max (i, k); (103) 

здесь, как и в (9), выписаны только главные члены уравнений.
§ 2. Дальнейшее преобразование уравнений (101, 102, 103) прово­

дится посредством применения к уравнениям (101) преобразований 
предыдущего пункта, но с выделением символа дифференцирования 
rf2= (при

Повторение подобного процесса приводит в конце концов к системе, 
которая дает возможность установить существование и определить 
произвол решения, опираясь на теорему С. Ковалевской. В процессе 
такого преобразования наших уравнений определяются, в частности, 
все значения произведений (1) в начальной точке иг = и?,..., ип —и°п. 
Будем называть систему форм «у положительно определенной, если 
матрица Грамма из определенных таким путем значений (1) будет 
положительно определенной.

Теперь может быть высказана следующая теорема.
Теорема. Пусть = coy (ад dui), s = 1, 2,..., k, с аналитическими 

коэффициентами образуют положительно определенную в указан­
ном смысле систему. Тогда в пространстве

м Л п(п+ !)...(« +2s —1).]
- 2j (2S)i

s=l

измерений найдется поверхность х = х (и,), для которой ^х)2 = сад 
Ограничиваясь такими х, для которых все векторы

dx, d1 х,..., dkх; %idk Jx, ..., Z\kx

(в числе H) линейно независимы, можно определить широту класса 
поверхностей х в 

N^^k-s)

s=0

п (n + l)'...(n + 2s)
(2s h!

функций п — 1 аргументов.
Не всякая система форм допускает вложение в пространство 

меныией размерности.
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Наше утверждение можно рассматривать как теорему, устанавли­
вающую произвол метрического изгибания порядка k для п-мерных 
поверхностей в пространстве указанного выше числа измерений.

Присоединяя к системе уравнений (2) уравнение «0 = %2, где 
<о0 = const > 0, мы можем провести аналогичные рассуждения и тем 
самым установить возможность вложения нашей римановой геометрии 
порядка k в пространство постоянной положительной кривизны. При 
этом, однако, условия, обеспечивающие вещественность, должны быть 
несколько изменены.

Поступило
22 IX 1950I
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