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МАТЕМАТИКА

А. Ф. ТИМАН и В. К. ДЗЯДЫК

О НАИЛУЧШЕМ ПРИБЛИЖЕНИИ КВАЗИ-ГЛАДКИХ ФУНКЦИЙ 
ОБЫКНОВЕННЫМИ ПОЛИНОМАМИ

(Представлено академиком А. Н. Колмогоровым S X 1950)

Пусть / (х) — непрерывная на данном сегменте [а, б] функция и 
Еп (f) — ее наилучшее равномерное приближение на [а, посредством 
обыкновенных полиномов степени п.

Для некоторых классов функций поведение величины Еп (/) хорошо 
известно. Наиболее хорошо изучены с этой точки зрения функции, 
имеющие производную некоторого порядка удовлетворяющую
условию Липшица а (0<а<Д). Для них

(1)

При 0<а<Д,в силу классических результатов С. Н. Бернштейна, 
равенство (1) влечет существование r-й производной, удовлетворяю­
щей условию Lipa, на любом сегменте [alt £4] с (а, Ь). В случае а = 1 
этого уже утверждать нельзя.

Аналогичные результаты имеют место для периодических функций 
и их наилучших приближений Еп (/) посредством тригонометриче­
ских полиномов порядка п. Рассматривая периодический случай, Зиг­
мунд показал (1), что условие

равносильно существованию у функции f (х) производной r-го порядка, 
удовлетворяющей условию квази-гладкости

|/и (хД - 2/W (х2) | < М I х, - х2 I (2)
*

равномерно на всей вещественной оси.
В связи с этим естественно возникает задача о поведении наилуч­

шего приближения произвольной квази-гладкой функции посредством 
обыкновенных полиномов. Некоторые такого рода исследования при­
надлежат Монтелю (2), который, базируясь на ряде свойств функций 
Бесселя, установил следующую теорему.

Теорема (П. Монтель). Если f (х) удовлетворяет условию

|/(хД-2/(-^Ц^)+/(х2) | xt^ (3)

для любых двух точек хх, х2€[а, Ь], то ее наилучшее приближение 
Еп (/) посредством обыкновенных полиномов на любом сегменте
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[ах йх], целиком лежащем внутри интервала (а, Ь), удовлетворяет 
неравенству

Е^ХК^, Ь^. (4)

При этом важно заметить, что константа Монтеля К (а^ Ь^, входя­
щая в (4), неограниченно растет при аг->а, Ьг^Ь. Таким образом, 
неравенство (4) еще не дает возможности судить о поведении En(f) 
на всем сегменте [а, 6].

В этой заметке мы ставим себе целью дать точный порядок убы­
вания величины En(f) на всем сегменте квази-гладкости функции f(x).

Основным результатом является теорема 1.
Теорема 1. Если непрерывная на [а, д] функция f(x) имеет 

r-ю (г 0) производную, удовлетворяющую условию (2), когда 
хр х2€ [а, Ь], то для ее наилучшего приближения на сегменте [а, Ь] по­
средством обыкновенных полиномов степени п справедливо соотно­
шение:

En(f) = o(-^-y (5)

Применением известного метода С. И. Бернштейна устанавливается 
следующее утверждение, которое можно рассматривать как обраще­
ние теоремы 1.

Теорема 2. Если наилучшее приближение функции f(x) на 
[а, Ь] посредством обыкновенных полиномов удовлетворяет условию 
(5), то f (х) имеет r-ю производную, квази-гладкую на любом сег­
менте [а1( Ь^, целиком лежащем внутри интервала (а, Ь).

Примечание. Пример функции/(х) = 1/1— х2, рассматривае­
мой на [— 1, 1] и не квази-гладкой на этом сегменте, показывает, что 
теорема 2 в известном смысле дальше не может быть улучшена.

Для доказательства теоремы 1 мы устанавливаем следующую лемму 
о продолжении квази-гладких функций.

Лемма. Если функция f (х), заданная на [а, Ь], принимает зна­
чение, равное нулю, в концах а, b и для любых двух точек 
хь х2б[д, Ь] удовлетворяет условию (3), то существует периодическая 
функция F (х) периода 2 (Ь — а), для которой

| F(xj - 2F (-) + F (х2) 3/И | х\ - х2 j (6)

равномерно на всей вещественной оси, и такая, что для всех х € [а, &] 
F(x)=/(x).

Без ограничения общности можно считать а = 0, b =* 1, М = 1, 
/(0) = /(1) — 0. Пусть F(x) периодическая, периода 2 функция, опре­
деленная на [—1, 1] следующим образом:

/W.
—/(— А

0<1х<С 1, 
— 1 <<х^ 0. (П

Покажем, что F(x) удовлетворяет условию (6) равномерно на всей 
вещественной оси. Для этой цели рассмотрим три произвольные точки 
х — h, х, х + h. Можно считать 0<х<Д. Если ни одна из точек 
х—h и х + А не находится на [0, 1], то неравенство (6) очевидно. 
В самом деле, в этом случае 2А>1 и, так как | F (х) | ^2/3 ((3), лем­
ма 1), то

| ^F(x) | <8/3<6А.
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Пусть теперь — 1 <х — Л<О<х<;х + Л-С 1. Введем целое число 
и число б, —1-<0-<1, так, чтобы h = (2k— 1 + 0)х. В силу (7) 

получим

|Д^МК31/[2(^-0^]-2/[2(Л-г-1)х]+/[2(^-г-2)х]| + 
i=0

+ |/(2х)-2/(х) +/(0) I + I/[(2Л + 6) х] - 2/[(2й - 1 + Va6)%] +
+ / [(26 - 2) х] | + |/ \&k - 2 + 0) х] - 2/ [(2£ - 1 + !/20) х] +

+ /(26х) | -< (46 + 2) х.

Еслц k = 1, то (6) вытекает из неравенства x<h. Если же 6^-2, 
то из Л + 9 /г< I дл Е(х) I <-kZTl h< 5А‘

Для завершения доказательства теоремы 1 остается еще восполь­
зоваться приведенным результатом Монтеля и теоремой Джексона.

Следствие. Если функция f(x), заданная на [Q, -к], удовлетво­
ряет там условию (3), то ее наилучшее приближение на этом 
сегменте посредством тригонометрических полиномов порядка п 
убывает как О

Это следствие представляет собой усиление упомянутой теоремы 
Зигмунда.
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