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ОПРЕДЕЛЕНИЕ ХАРАКТЕРА ИЗОЛИРОВАННОЙ ОСОБЕННОСТИ 
АНАЛИТИЧЕСКОЙ ФУНКЦИИ ПО МОДУЛЯМ КОЭФФИЦИЕНТОВ 

ДВУХ ЕЕ СТЕПЕННЫХ РАЗЛОЖЕНИЙ

(Представлено академиком А. Н. Колмогоровым 22 IX 1950)

В силу классической теоремы единственности аналитическая функ­
ция полностью определяется коэффициентами своего разложения 
в степенной ряд. Однако задания одних модулей этих коэффициентов 
недостаточно даже для определения характера особенностей функций. 
Правда, для целых функций имеются классические формулы, устанав­
ливающие точную зависимость между ростом модулей коэффициентов 
и ростом максимума модуля функции на окружности | z | — г. В настоя­
щей заметке мы укажем, как определяется характер каждой изоли­
рованной особенности, если известны модули коэффициентов разло­
жений функции в двух кольцах (или кругах), на общей граничной 
окружности которых лежит исследуемая особенность.

Мы рассматриваем здесь только такие изолированные особенности, 
в окрестности которых функция однозначна. Под характером особен­
ности в точке zQ функции ф (г) мы понимаем рост максимума модуля 
на окружности \z\ = г целой функции h(z) такой, что — ф(г)
будет правильной функцией в точке z0. Соответственно порядком 
и типом особенности в точке z0 называем порядок и тип целой функ­
ции A (z). Кроме того, будем говорить, что целая функция (особен­
ность) принадлежит к классу [р, р], если она или имеет порядок <р 
или имеет порядок р и тип <С р. Целую функцию (особенность) будем 
-считать принадлежащей классу [р, р), если она или имеет порядок <р, 
или имеет порядок р и тип <р.

В частном случае задача была поставлена Г. Полна Ц):
Пусть ф (z) имеет в расширенной плоскости единственную осо- 

со оо

бенность в точке 1; ф(г) = 2 a«z”> lzl<3; ф(г) = Ьп2~п, \z\>l. 
п=Э п=1

Тогда, если \ап\ = О(nk) и \Ьп\ = О(nk), то ф(z) имеет в точке 1 
полюс (А+ 1)-го порядка.

Различные варианты доказательства этого предложения дали 
Н. Обрешков (2), Г. Сеге (3) и Н. Г. Чеботарев (4). А. И. Маркушевич 
поставил задачу: распространить этот результат на случай конечного 
числа особенностей и на случай произвольного роста коэффициентов 
{ lim/|ц„| = 1, lim /’і&лі = 1). 

л->оо л->оо
Теорема 1. Если ф(г) имеет в расширенной плоскости един- (СО

ф (z) = 2 anZn, Н<1; Ф(г) =
п=0
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= 2 M~",lz|>lj И Ian I = О(?ла), |&„| = O(?”a), 0«l, то эта 
п=1 '

особенность будет класса [р, р,], где р = и р. =
Теорема 2. Если ф(z) — однозначная аналитическая функция, 

все особенности которой в расширенной плоскости лежат на еди- 
.СО СО \

ничной окружности I ф (z) = у anzn, | z К 1; ф (z) = 2 bnz~n, | z | > 1)
' л=0 л=1 '

« I ап I = О (ekna), I bn I = О (ekn°), то каждая изолированная особен­
ность функции ф (z) будет класса [р, р].

Теорема 3. Если ф(z) — однозначная аналитическая функция, 
все особенности которой в кольце лежат на

(со

Ф (z) = 2 Сп%П' г' < 121 < п Ф (z) = 
n=i — co co \

= 2 Г<1И< M и lc«l = n = 2> • ••»
n= — co /

= О (ekna), n = 1, 2, 3,..., то на окружности | z | = г каждая изоли­
рованная особенность функции ф (z) будет класса [р, р].

Все три теоремы можно распространить на случай | ап | = О (еа(л)), 
со

где о (п) = о (и)—монотонная функция такая, чтооо, а также 
о

на случай функций, представимых общими рядами Дирихле: ф (z) = 
= 2 an^nZ, Re z > 0; ф (z) = 2 Ьпв^, Re z < 0, где | X„ | > | Х„_і | и 

Л=1 Л=1
существует ^>0 такое, что | Х„— Хл-і |>q и ReX„>9|ImX„|.

Укажем одну интерпретацию задачи, решаемой теоремой 1. Пусть 
ф (z) = /г 0 00 > где — Целая функция. Тогда условия | ап 1 — 
= О^е0^ и \bn\ = O(e°w), где с(п) = о (п), равносильны условию 

где xQ-^^ 2 х<1, или уело-

вию I h. (w) ] = О [х 0 |)] на окружности | w — | = ,
- 1 Т IIтак как преобразование w = переводит окружность | z | = г в 

I 1+^1 2г '
окружность IW | = |1 — ^| •

Итак, задача принимает следующий вид: известен (асимптотически) 
максимум модуля целой функции на окружности |w — j = i — 
найти (асимптотически) максимум модуля этой целой функции на 
окружности | w | = (г—*!)•

Г. Сеге (3) в своем доказательстве теоремы Полна исходит из этой 

интерпретации и опирается на субгармоничность функции \h (w) 
Метод Сеге позволяет распространить теорему Полна на случай, 
когда In | ап | = О (па) при а 1І2> ПРИ этом приходится использовать 
субгармоничность функции In | h (w) |. Для этот метод уже не
годится, так как функция {In | h. (w) |} при 1 не обязана быть суб­
гармонической.
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Доказательство теоремы 1 основано на следующих трех леммах.
Лемма 1. Пусть F(z) —целая функция класса [1, к) и |/7(п)| = 

= O(ekn"\ п = 0, 1, 2,..и а< 1, тогда |Д(х) | = О (ekx°} при х^О.
Эта лемма есть следствие теоремы М. Картрайт (5):
Если | F (п) | = О (1), то | F(x) | = О (1).
Она точна, как показывают примеры функции Миттаг-Леффлера: 

Еа (kl'°z) = V = aekz° + о( А -Л при Re z >0 и функ-

ЦИИ ^SiBKZ.
Лемма 2. Пусть F(х) — целая функция класса [1,0] и F(х) = 

= О(е*1хГ) при 1тх = 0 и <т<1; тогда F(z) будет класса 
[и 1a, k sec .

Эта лемма — следствие теоремы Фрагмена-Линделёфа. Она точна, 
как показывают примеры функции Миттаг-Леффлера порядка а и типа; 
k sec (сттс / 2):

при Imz^-О и функции sin az при любом а>0.
Лемма 3. (Теорема А. О. Гельфонда (6)). Для того чтобы целая, 

функция F (г) была порядка с <1 и типа k, необходимо и доста- 
со

точно, чтобы функция ф (z) = у F (n) z" имела в точке 1 особен- 
n=G

ность (единственную в расширенной плоскости по теореме Вигер- 
a (баЙ+Р

та-Ло) порядка р = —- и типа I = ——?—.
Теперь легко докажем теорему 1.
По теореме Вигерта-Ло существует целая функция F(z) класса [1, 0] 

такая, что F (п) = ап и F(—n) =— bn. Применяя в функции F(z) 
поочередно леммы 1, 2 и 3, мы убеждаемся, что ф(г) имеет в точке 1 
особенность класса [р, р].

Теорема 1 точна, как показывает пример функции фа (z) = 
ОО

= 2 [—«^sec^-^ nj z”> lzl<b

Доказательство теоремы 2. Пусть — какая-нибудь изо­
лированная особенность функции ф (z). Путем поворота, т. е. заменой 
ф* (z) = ф (ze^-W), можно добиться того, что ф* (z) будет регулярна на 
дугах (е1б-^\ е1Х) и (е‘\ e‘6+s))t где = к — е /2. Кроме того,
можно считать, что ф* (оо) = 0. Положим ф* (z) = фх (z) ф фи (z), где 
фх (z) (фх (оо) = 0) имеет единственную в расширенной плоскости осо­
бенность в точке z = еа и фи (z) — правильная функция в этой точке, 
и вводим функцию фх (z) = фх (zea).

Функции ф* (z), фх (z), фх (z), ф^ (z) однозначные и аналитические 
в расширенной плоскости вне дуги единичной окружности | argz |< 
и равны 0 в точке z = оо. Для такой функции ф(г) введем ассоци­
ированную целую функцию (7) F(z) = ф (£) dt, где С — кон-

с
тур, отделяющий дугу |z[ = l, |argz|<[A от точек z = 0 и z = оо,
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пробегаемый по часовой стрелке. Очевидно, F (п)— | и

/4-0 = . Нетрудно
Z=sO

ОО

убедиться, что F(z)— целая

функция класса [1, k]. Полагая f(z)=^F(x)e zxdx, Re (zx) >0, можно 
о

показать, что функция f (z) — ф (е~г) будет аналитической в круге 
|2|<тс. Так как = z + о (1) при z^l, то функции ф (е~г) и ф (z) 
в точке 2=1 имеют особенности одного и того же характера.

Очевидно, что F" (z) = F^ (2) + Fy. (z) и f* (2) = fx (z) + (2). Кроме 
того, F^ (z) = FX (z) е~ІХг и fAz)=Jx (z + ZX), t. e. f* (2) — fx {z-^-i^+f^z) 
и, ввиду регулярности в окрестности точки 2 = — /X функции Л (2), 
вблизи этой точки имеем: | Л (z + ZX) | = О (\f* (2) |).

Функция F* (z) удовлетворяет всем условиям леммы 1, поэтому
IF* (х) ] = О (е*И°) = О [ Е° | х | )]; отсюда имеем: | f* (z) | =

=0 [Л (I Re 21 -)] = О [ф^е" 'Rez|)], где Л (z) ^^Ea(k I/ax) e~zxdx и фа (2) = 
= ^Ea^n)zn.

л=0
Наконец, по лемме 3, функция фа(г) имеет в точке z=\ особен- 

ность порядка р и типа I = —, т. е. |Л (2 + ZX) | = О (е 'Rez' )

г d — H 
вблизи точки z = — i\ или |Л(1—2)| = 0<е Rez у = O\e
вблизи точки 2 = 1.

Далее, | фх (2) | = О (| фх (e~^) |) - О (\J\ (1 - 2) |) =;O 1 J.
©o

Но тогда \an\ = O(ekn°) и | bn | = О (ekn°\ где фх(2) = ^anZ11, | z | < 1,
л-0

и ^x(z) = ^bnZ п, | 21 > 1 (8), и функция фх (4 по теореме 1, имеет 

в точке z = 1 особенность класса [р, р.], следовательно, ф (z) имеет 
особенность того же класса в точке z = е1ф».

Доказательство теоремы 3. Представим ф(г) в виде 
ОО ОО

ф (2) = Фі (2) + ф2 (2), где Фі (2) = 2 anZn' I Z I < п Ф1 (0 = 2 bnZ~n ’ 
n=^Q n=^\

co

, 2 ]>г и ф2(2) = 2 r'<lzl<r"- Тогда, пользуясь формулами 

Коши для коэффициентов степенных рядов, найдем, что ап = с’п — с" 
и bn = cLn — с-п, п = 1, 2, . . . . А так как | сп | гп = о (1) и | с_п | г~п= 
= о(1) при /г>0, то \an\rn =O(ekna) и \Ьп\г~п = О(екп°\ У функции 
.(z) = фх (zr), по теореме 2, каждая изолированная особенность при­
надлежит классу [р, (4 Очевидно, то же верно и для фх(2), следова­
тельно, и для ф>(2).
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22IX1950 
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