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МАТЕМАТИКА

ГД. М. ГРОБМАН

О ХАРАКТЕРИСТИЧЕСКИХ ПОКАЗАТЕЛЯХ СИСТЕМ, 
БЛИЗКИХ К ЛИНЕЙНЫМ

(Представлено академиком И. Г. Петровским 19 IX I960)

Заметка посвящена изучению вопроса о взаимном расположении 
характеристических показателей*  систем

* Характеристический показатель у решения (хп ..., хп) вычисляется по формуле 
У = lim 1lg S I xi I и равен характеристичному числу Ляпунова, взятому с обратным

>оо А
знаком.

dx, [vii
+ ft (t, Хь хп\ (а)

(/;= 1, 2, ..., л) (0) 

в зависимости от свойств функций
Прежде чем приступить к изложению результатов, сделаем не­

сколько замечаний.
Пусть ..., со, — попарно различные действительные числа и 

в какой-либо нормальной (х) системе решений данной линейной системы 
уравнений присутствует Т решений с характеристическими показателя­
ми сох; /2 решений с характеристическими показателями со2, ..., 
ls решений с характеристическими показателями со3 и /х + ... + = п.

В таком случае числа <ох, со2,..., со8 мы будем называть характери­
стическими показателями данной системы уравнений, а 1Ъ 12> •••, ls~ 
их кратностями.

Легко видеть, что кратность не зависит от выбора нормальной 
системы.

Для систем уравнений с постоянными коэффициентами харак­
теристическими показателями служат действительные части корней 
характеристического уравнения. Число корней, у которых действитель­
ные части равны w*,  есть кратность показателя со*.

Введем обозначения:

ain\ — f(t н — х^
• ■ • ■ »жліл — I : Ь J х) — I............................

^пп' 'хп' \fn (^> • • • > Хп)

Системы (а) и (р) перепишутся в виде

d̂  = Ax+f{t,x), (1)

dY (2)
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Решением уравнения (2) является матрица

•У11 ' ' • Ухп

\У пХ Упп
столбцы которой представляют решения системы (й)
„ °™осительно Правых частей Уравнений (1) и (2) сделаем следую­
щие предположения: 7

1° Л— постоянная матрица.
любого л вектоР> определенный и непрерывный для и 

3°/(£0) = 0.
4° |/(А -И -/(^ х") I < g (t) I у - х" |.
одесь g (t) — непрерывная неотрицательная функция, а | х | обозна­

чает норму х и | х [ = 2 I хк |. Нормой матрицы К (^) = (кц (t)) называют
&=1

неотрицательную функцию | К it) | = 2 I kij (t) |.
г ° .х К 7=1

ИЛ —А- /ейетвительные части корней уравнения
'L —U и 4, Z2, /—их кратности (5 <«/. 4-/„+ Д.1=п
Е — единичная матрица). 1 2 ’

I ~nk (^) I < 1 для t < 0 и к = 0, 1, ...,

ниЛ^еоЛаЗЬ1ВаТЬ Н1КОТ°РУЮ матрицу нормальной матрицей уравне-
( ), если ее столбцы составляют фундаментальную систему реше­

нии системы (р) и при этом каждый из первых // столбцов Емеет 
иУЛапр ъ ка пДЫИ И3 следУюЩ«х столбцов - показатель ы2 и т. д. 

нппмяЛІ Р Ы ЛяПуН°Ва ° сУмме характеристических показателей 
нормальной системы решении вытекает, что нормальная матрица состоит 
из решении нормальной системы

Обозначим: /х + I, + ... ik = 0, ns = п,

Уп ’/ °}, Y)l к = (° • ■ ’ 03/1 *+1 ' ‘ 'У1п
<Ут •••У„*О...О/ \6 ... о уп 4+1• • .упп, Ск =

Ci
Ci

Ск
О

О
п—пW Yk + = Yn = Y’ Y™ = Y*= °’ С* = С.

свойством urn ”ормальная матрица уравнения (2), обладающая тем 
своиством, что при умножении слева на некоторую невырожденную 
постоянную матрицу она обращается в треугольную. СуществованиеД ХС™пНеТРУДН° Д°Ка3аТЬ’ Действительно/для Хой матри­
цы А, очевидно, существует матрица D такая, что D~x AD = Д есть

элемен™ “оторой
Легко видеть, что у уравнения dVI dt =/W существует тоеуголь- 

м!пЛ°РМаЛЬНаЯ матРица V Но тогДа матрица DV (t) является нор­
мальной для уравнения (2). ' р
ния^иУтГ ^)~такая 5пеЦ«аль^ нормальная матрица уравне­
ния (2) и Y (0) = В. Пусть 0<s<i/4min(<0 w.) /=!% ... s-j
и число b определено из условий ’

I Ynk (0 I <be{a>k+z} 1 для t^O и к = 1, 2, ..s
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Теорема 1. Если для t^>t0
t ОО
5 е—^ g (т) dx + <*—’> g (?) d~ < 26Тв । (4)
/. t

и для любого положительного числа а

е-ат g (?) du < + оо, 
/о

(5)

то у уравнения (1) для всякого ^ = 1, 2, ...,s существует п,-мер- 
ное множество решений, характеристические показатели которых 
лежат на сегменте [со*— 2s, ык + 2s]. Любое решение уравнения (1) 
принадлежит одному из этих множеств (множество решений назы­
вается ^-мерным, если множество начальных значений ^-мерно).

Легко убедиться, что условия (4) и (5) реализуются, если, например:
1) для или 2) + g2(t\ где gi(0O<

ОО
<ЩВ~\ ДЛЯ а 5 ^г(т)^т< +ОО.

• ^0
Случай (1) обобщает и уточняет теорему Персидского (2) об устой­

чивости характеристических показателей линейных систем с постоян­
ными коэффициентами.

Из теоремы 1 очень просто выводятся достаточные условия того, 
чтобы характеристические показатели уравнения (1) совпадали с пока­
зателями уравнения (2). Точнее, имеет место теорема 2.

Теорема 2. Пусть дана последовательность положительных 
чисел s1( s2, ..., ..., стремящаяся к нулю, и пусть для любого
р = 1, 2, 3, ... существует такое Тр, что для і^Тр

е^g (?) d- + J е^~^ g (?) dx

гр • 1
где константа Ьр определена из условий (3) для ър.

В этих предположениях характеристический показатель любого 
решения уравнения (1) равен одному из чисел w2, ..., a>s. Множе­
ство решений уравнения (1), характеристические показатели кото­
рых равны ык, имеет размерность nk (р = 1, 2, ...,$).

Требования этой теоремы выполняются, если g (t) = g± (t) + gz (0> 
co

где gi (t) -> 0 при a $ g2 (t) dt < + oo.
to

Случай, когда g(t)-^Q при f->oo (т. е. g2(0 — 0)> является непо­
средственным обобщением теоремы Перрона (3) о том, что если коэф­
фициенты aik(t) некоторой линейной системы стремятся при к 
конечным пределам aik, то характеристические показатели этой системы 
суть вещественные части корней уравнения [|af4 — 81Ч.Х|| = 0.

Теорема 1 позволяет вывести некоторые заключения о решениях 
и в том случае, когда f(t, х) определена или удовлетворяет условию 
Липшица не во всем пространстве х, а лишь в некоторой ограничен­
ной области G, содержащей начало координат.

Теорема 3. Пусть wm+i С • • -<Cws -С 5).
d = min (ы/+і — ы7), у =1,2, ...,s — 1, 0<е<тіп^, ~т") '
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Если выполнены условия (4) и (5), то у уравнения (1):
1) Для любого k = 1, 2, ..., т существует пк-мерное множество 

решений, характеристические показатели которых расположены 
на сегменте [сол — 2s, <o4+2s].

2) Характеристический показатель всякого решения уравнения (1), 
определенного при t->oo, лежит на одном из отрезков [ы/£ — 2s, 

+ 2s], k = 1, 2, ..., m и [ыж+1 — 2s, 0], если ыт+1 — 2s < 0.
3) Хроме того, если ws— 2s >0, то у уравнения (1) существует 

п-мерное множество решений, покидающих область G при конечных 
значениях t.

4) Если wm+1>0 и s<min то характеристиче­
ский показатель любого решения уравнения (1), определенного при 
t-^oo, принадлежит одному из т отрезков [ы* — 2в, ык + 2s], 
k= 1, 2, .... т.

Здесь, разумеется, имеют место следствия, аналогичные следствиям 
из теоремы 1.

Справедлива также следующая теорема.
Теорема 4. Пусть f (t, х) обладает свойствами-.
1) f(t, х) определена и непрерывна для t^>tn и x^G;

0) = 0;
3) Для любого существуют Т и 8 такие, что из условия 

t^T и | х' |< 8, | х" | < 8 вытекает, что

\f{t,x')-f{t,x"}\<rl\x'-x"\.

Если <оь со2, ..., «то<0<сот+1, то:
1. Для k = 1, 2, ..., т у уравнения (1) существует пк-мерное 

множество решений, характеристические показатели которых 
равны ык.

2. , Всякое решение уравнения (1), не уходящее из области G при 
конечном t, либо принадлежит одному из этих множеств, либо его 
характеристический показатель равен нулю.

3. Если ыд>0, то существует п-мерное множество решений 
уравнения (1), покидающих достаточно малую окрестность начала 
координат при конечных t.

4. Если среди чисел <ох, ..., <од нет равных нулю, то суще­
ствует столь малая окрестность начала координат, что всякое 
решение, остающееся в ней бесконечно долго, имеет отрицательный 
характеристический показатель.

Первые два утверждения составляют теорему Перрона, третье 
обобщает теорему Ляпунова о неустойчивости по первому приближе­
нию, четвертое — теорему Петровского (4).

Поступило
12 IX 1950
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