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МАТЕМАТИКА

М. К. ФАГЕ

СПРЯМЛЕНИЕ БАЗИСОВ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

(Представлено академиком В. И. Смирновым 28 VIII 1250)

В этой заметке: 1) вводятся понятия биортогональной системы 
подпространств и базиса из подпространств в произвольном 
гильбертовом пространстве £ (что является обобщением понятий век­
торных биортогональных систем и базисов) и устанавливается связь 
этих понятии с идемпотентными разложениями единицы (и р е ) (§ 1) (3)- 
2) указывается операторная форма, обобщение и условие сходимости 
ортогонализационного процесса Шмидта (§ 2); обычный случай орто­
гонализации получается, когда ^ — сепарабельное, а все § —одно­
мерные (§ 3). . п

§ 1. Пару счетных последовательностей подпространств {§л}°° и 
{®3і в S назовем биортогональной системой подпространств, а си­
стемы и {®л}“ сопряженными одна другой, если: 1°. §,(Ш®И( 
?РИ П^т'’ определяют идемпотентный оператор J==$nx&n
(п 1, 2, ...) ( ). В силу теоремы 1 из (3)при наличии условия 2° усло­
вие 1 равносильно операторной ортогональности JnJm = 0 при п т.

Последовательность назовем базисом <£, если всякий 
вектор единственным образом раскладывается в сходящийся по 
норме ряд 2-«п с Из теоремы 7 главы III книги Банаха (J)

следует, что соответствие хп = Jnx определяет идемпотентный опера­
тор Для которого является неподвижным подпространством (3); 
при этом JnJm = 0 при п^т и Jnx = х для всех т. е.

есть и.р.е. (см. (3), § 2). Но. тогда ((3), теорема 6) и последовательность 
сопряженных операторов {Jn}\ образует и.р.е., следовательно, их не­
подвижные подпространства ®,г образуют (единственный) базис, со­
пряженный с {©л})°. Итак, доказана следующая теорема.

Теорема 1. Для всякого базиса {^л}“ существует единственная 
сопряженная система {©J” являющаяся также базисом Соот­
ветствующие идемпотентные операторы Jn = ^nx&n образуют

Очевидно, что всякое и.р.е. {Jn = х определяет два базиса
{иЗГ и {®л}, сопряженные друг другу.

§ 2. Ортогонализационный процесс Шмидта в применении к ли­
нейно независимой системе векторов (в частности, к базису сепара- 
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бельнэго гильбертова просто .нстн. ) {hn}~ состоит, как известно, в 
последовательном построении векторов

• • ■> — алі^і + • • • + а««

каждый из которых (еД перпендикулярен к уже построенным

есть произвольный базис — ему со-. . • > ^п—1*
Пусть теперь {®п}°

пряженный базис, {/„ = х -соответствующее и.р.е. Спроектиро­
вав на сумму + ...+$„ первых/г подпространств данного
базиса {©,г}1°, мы получим в линейное многообразие &п = Н 
(/Д") — проектор на ^п^), являющееся замкнутым, так как, по теоре­
ме 2 из (3), имеется обратное линейное преобразование fan на 
осуществляемое идемпотентным оператором fn) = Ji + . ■ • +Л, где 
через обозначена сумма . +Д> являющаяся идемпотентным
оператором вида X &'п\ причем ®(п) = + . . . + Итак, 
есть подпространство.

Теорема 2. 1°. £п есть ортогональное дополнение в Q к 
коротко-, 2°. ^ © . . . © £п = ®(П) = + -

_р (здесь © означает сложение ортогональных ^подпрост­
ранств); 3™. {$п}™ есть ортогональный („самосопряженный") базис fa.

Доказательство. 2° следует из 1°; 3° следует из 2° и того, 
что есть базис; остается доказать 1°. Прежде всего, очевидно, 

по построению. Далее, $n_L&n пусть е^^п, ; т0"
г да e^H^g, где g^&n, и, следовательно, (е, h) = h) =
= (g, H^h) = (g, h), последнее — в силу cz но g LA, так 
как &n JL следовательно, (e, h)=(g, A) = 0, т. e. ; таким
образом, ^c©(n) © Докажем обратное включение: пусть

определим g = тогда, по теореме 2 из (3),
уже имеем / = H(n}g, и остается показать, что g € ®п, т. е., что 
Jng = g; так как g£&(n) — неподвижному подпространству оператора

J*n, To/n)*g = g, и остается проверить, что /" n g = 0, 
т. е., по теореме 1 из (3), что g _L &п п; пусть А€§( ,Torna(g,A) — 
= (Jw*f, h) = (f, Jwh) = (f, А) = 0, в силу выбора f. 1° доказано.

Теперь построим линейные операторы Av Az, ..., которые в сво­
ей совокупности обобщают преобразование (1); Ап будет обобщать 
преобразование, определяемое первыми п равенствами (1).

ТеоремаЗ. 1°. Оператор Ап= 2 HWjkJk отображает взаимно- 
a-i

однозначно и линейно подпространство &п)= + • •• + ^„насебя,
причем подпространства ..., преобразуются соответствен­
но в гп. е. ^А^к (А = 1, 2, ..., п). 2L Оператор
An+i = Ап +H{n+^Jn+iJn+i является „продолжением" оператора Ап 
в том смысле, что Ап+\ х. == Апх при х € \ 3°. Обратное к Ап

п
отображение на себя дает оператор В,= 2 Нк№Ек. 4°. Bn+i 

k=i
в том же смысле „продолжает" Вп, т. е. Вп^ х = Впх при 
х €

Здесь Нк, Hw и Ек суть проекторы соответственно на 
и ^к.
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Доказательство. Докажем сначала 2°: если х€®(л), то 
Л-н х = 0 и, следовательно, А^ х = Апх. Аналогично доказывает­
ся 4°. Теперь для доказательства 1Q и 3° достаточно установить, что 
Ап и Вп взаимно-обратно преобразуют на пусть тогда 
Л% = 0 при £<п и, следовательно, у = Апх = H{n}J*nJnx, где Jnx = x, 
JnJnx^&n, и поэтому у^(§п (по определению наоборот, если 
y^Sw то = 0 при /г<щ Ёпу—у, и поэтому Впу = HnJw*-y. Та­
ким образом, остается доказать равенства HnJ(n}*H^JnX—x при xQQn 
и ЛИ„JW*у = у при у £<оу но оба они следуют из теоремы 2 в (3), 
применяя которую к доказательству второго равенства нужно иметь 
в виду, что /"^у € как это было отмечено при построении £п. Тео­
рема доказана.

Аналогично строится спрямление сопряженного базиса {$„}”: про­
ектированием на ®(и) = + ... + получается соответствующий
ортогональный базис из подпространств Fn = G(n)^Zi, причем = J^Fn 
(n = 1, 2, ...).

Выясним теперь вопрос о сходимости описанного спрямляющего 
процесса. Под этим будет подразумеваться сходимость (по норме 
векторов) операторов Ап и Вп к ограниченным операторам 

А = У HwJnJ,v соответственно В= 2 Еп. Если это имеет место, 
П=1 П=1

то на основании свойства „продолжения" операторы А и В взаимно­
однозначно отображают на (п = 1, 2, ...) и, следовательно, всё 

на себя. Таким образом, под сходимостью этого процесса можно 
понимать существование взаимно-обратных линейных операторов А и 
В, продолжающих все Дда соответственно В„, в том смысле, что 
Ах = Апх, Вх — Впх при и любом п=1, 2,... Базис во­
обще допускающий линейное обратимое преобразование в ортогональ­
ный базис, назовем спрямляемым.

Итак, сходимость спрямляющего процесса теоремы 3 влечет 
спрямляемость, базиса.

Обратно, пусть спрямляем и, следовательно, спрямляемо со­
ответствующее и.р.е. {Jn = &п х ОД”

По теореме 7 из (3), существует постоянная С>0 такая, что для 
со

всех х£<§ выполняются неравенства С-1||х||2<Ж<<ОД2-Далее 
л=1

заметим, что из сходимости ^Jnx = x для всех х^^ следует огра- 
П=1

ниченность норм | + ... + Jn | D, откуда | Jn | 2D. Теперь дока­
жем существование для всякого предела lim Апх =

Л-»со

= 2 jnx = Ах. Определим hn=Jnx^^n,

отсюда ЦМІМ^І • | Л HIM <2 • D ■ ||M- Далее, по 
теореме 2 из (3), gn = еп, hn = Hngm и, следовательно, ЦМ^ 

\Нп | • | J(n}*) • ||e,f|| D • ||еп||. Из этих оценок получим
СО ОО

< 2 IIM2<^4Z)2C||x||2. Отсюда и следует сходимость ряда 2 =
п=1 л = 1

= Ах=у, причем оператор А = 2 ^WJnJn ограничен и имеет огра-
л=1
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ниченный обратный А 1 — В, х — By. Так как Д-образ ость (§,» то 
Д-образ всего £ всюду плотен в и, следовательно, оператор В, 
как ограниченный и замкнутый, определен на всем Покажем, что

Н со т

В = 11m Вп = 2 Действительно, применяя к у = Ах=^ ек
п п

оператор В,„ получим В,у = 2 HkJw‘ek = 2 hk->x = By при п^оо, 
й=1

т. е. В = Игл Вп. Итак, доказана теорема 4. 
П

Теорема 4. Для сходимости спрямляющего процесса теоремы, 
3 необходимо и достаточно, чтобы данный базис {^,j“ был спрям­
ляемым, что равносильно спрямляемости соответствующего и.р.е.

Так как {/Jr спрямляемо одновременно с {Л}Г, то сходимость 
спрямляющего процесса будет иметь место одновременно и у данно­
го базиса и у ему сопряженного

§ 3. Для векторного базиса {h в сепарабельном гильбертовом 
пространстве <§ (например, в А(йі]) из теоремы 4 и замечания в конце 
статьи (3) следует теорема 5.

Теорема 5. Для сходимости о ттогонализационного процесса 
Шмидта (1) необходимо и достаточно, чтобы векторы h ь (п=1, 2,...), 
с точностью до постоянных не равных нулю множителей, состав­
ляли базис Рисса (2). При этом для того, чтобы нормы |le,J| удов­
летворяли неравенствам 0<а<(||е || необходимо и достаточ­
но, чтобы система {й^ была уже базисом Рисса.

Здесь под сходимостью ортогонализационного процесса Шмидта 
понимается существование ограниченного и обратимого линейного 
оператора А, «продолжающего» соответствие Ahn = еп (п = 1, 2, ...).

Черновицкий государственный Поступило
университет 12 VIII 1950
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