
Доклады Академии Наук СССР 
I960. Том LXXIV, № 5
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К ТЕОРИИ ZA-ГРУПП

(Представлено академиком О. Ю. Шмидтом 3 VIII1950)

В настоящей заметке исследуются соотношения между рангом 
в смысле С. Н. Черникова 0) и рангами в смысле А. И. Мальцева (2) 
в случае групп, обладающих возрастающим центральным рядом 
(ZA-групп), причем для ZA-групп без кручения устанавливается свой­
ство (подсказанное автору С. Н. Черниковым), аналогичное локальной 
конечности для периодических групп (см. теорему 4). Это свойство 
используется для обобщения в разных направлениях теоремы 3 ра­
боты А. И. Мальцева (3). Употребляющиеся ниже понятия рациональ­
ного ряда и пополнения содержатся в работах (V,4)-

1. Теорема 1. Пополнение ZA-группы ® без кручения с длиной 
рационального ряда, равной у, имеет корневой ряд длины у.

Доказательство. Пусть Ео — ®0 g Si с ... G ®а с ... С ®Y = 
= ® — рациональный ряд группы ®. Мы будем предполагать, что ® 
вложена в некоторую полную ZA-группу $8 без кручения (3) и обо­
значать ®« пополнение (в 5В) подгруппы ®а. Так как для у = 1 тео­
рема очевидна, то предположим ее доказанной для всех ®а при a<Y-

Если у предельное, то ®' = 2®а, очевидно, будет пополнением 
a<Y

группы ® с корневым рядом длины у.
Если у непредельное, то, по предположению, ®*-i имеет корневой 

ряд длины у—1 и, ввиду теоремы 7 из (3), является нормальным 
делителем в ®; = ®*. Выберем в ® элемент А, не содержащийся 
в ®Y-i, и пусть 51*— пополнение циклической подгруппы 51 элемента А. 
Легко видеть, что 51*П®г-і = Д, и потому группа ®' = @ ‘-15Г имеет 
корневой ряд длины у. Но ®' совпадает с пополнением ®* группы ®. 
В самом деле, нетрудно показать, опираясь на полноту ®' и одно­
значность извлечения корня в 58 (3), что ® с ©'. Но тогда, ввиду 
свойства минимальности пополнения ((3), § 2) и очевидного включе­
ния ®' с ©*, имеем просто ®' = ®*, что и требовалось.

Доказанная теорема показывает, что ранг в смысле С. Н. Черни­
кова сохраняется при переходе к пополнению. Ранги в смысле 
А. И. Мальцева этим свойством не обладают (3).

2. Теорема 2. Для того чтобы ZA-группа ® имела конечное 
число образующих, необходимо и достаточно, чтобы она обладала 
конечным нормальным рядом с циклическими факторами-

Доказательство. Достаточность очевидна. Необходимость уста­
навливается следующим образом. Пусть ® имеет конечное число обра­
зующих. Тогда она нильпотентна ((3), стр. 212) и, как нетрудно по­
казать, все факторы ее убывающего ряда коммутантов имеют конечное 
число образующих. Требуемый нормальный ряд группы ® получается 
теперь очевидным уплотнением ее убывающего ряда коммутантов.
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Следствие 1. Любая подгруппа ZA-группы @ с конечным чис­
лом образующих имеет конечное число образующих. Минимальные 
числа образующих всех подгрупп группы (У ограничены в совокуп­
ности.

Следствие 2. ZA-группа без кручения с конечным числом об­
разующих имеет конечный рациональный ряд с циклическими факто­
рами (см. также (5), стр. 24).

Теорема 2 и следствия из нее теряют силу даже для двухсту- 
пенно разрешимых групп, как показывает пример группы с образую­
щими Ai = —1, 0, 1,...), В и определяющими соотношениями
[Ai, Ау] = 1 (/ = ..., -1, 0, 1,...; j = ..., -1,0, 1,...), В^А,В = 
= Аж(г = ..., —1, 0, 1,...).

Условимся в дальнейшем обозначать буквой г ранг ZA-группы без 
кручения в смысле С. Н. Черникова, гг— общий и г2— специальный 
ранги в смысле А. И. Мальцева. В случае абелевых групп без круче­
ния г = г1 = г2. Для ZA-групп без кручения соотношение между 
Л и г2 дается следующей теоремой.

Теорема 3. Для ZA-групп без крученая имеет место нера­
венство причем из конечности одного из рангов г2 или
г следует конечность всех остальных рангов.

Доказательство. Неравенство гг^г2 есть очевидное след­
ствие определения рангов Гд и г2 (2). Далее, любая подгруппа 21 с ко­
нечным числом образующих группы ® конечного ранга г имеет 
рациональный ряд с циклическими факторами (следствие 2 из тео­
ремы 2), длина которого /, очевидно, не превосходит г; но тогда 21 
имеет систему образующих, содержащую I элементов, т. е. г2^г.

Итак, неравенство доказано. Попутно установлено, что
из конечности ранга г следует конечность г2, а следовательно, и rv

Пусть теперь ранг г2 конечен. Конечность ранга гг очевидна. 
Но и ранг г также конечен. В самом деле, любой из максимальных 
абелевых нормальных делителей группы @ имеет конечный специаль­
ный ранг, т. е. является абелевой группой с конечным рациональным 
рядом. В силу теоремы 4 из (т) рациональный ряд группы ® тоже 
конечен, что окончательно доказывает теорему.

Из конечности ранга t\ не следует, вообще говоря, конечности 
рангов г2 и г даже для ZA-групп. В этом нас убеждает пример группы 
с образующими A/(z = l, 2,...), В и определяющими соотношениями' 
[А; Д] = 1; [Ай В]=А^ (4 = 2, 3,...); [Ад Ai] = 1 (i = 1, 2,...; j =

1, 2,...). Нетрудно видеть, что эта группа обладает верхним цен­
тральным рядом длины w 4- 1 с циклическими факторами. Ее Гд-ранг 
равен двум, а ранги г и г2 бесконечны.

Однако в случае групп без кручения с конечной длиной цен­
трального ряда все ранги конечны или бесконечны одновремен­
но, ибо тогда конечность Гд влечет за собой конечность г. ((«) теоое- 
ма 2, § 2). 2 ц h 1

Лемма 1. В полной ZA-группе ® без кручения любое конечное 
множество подгрупп і8і[і=\у 2,..., п) с конечными корневыми ря­
дами порождает подгруппу 55 с конечным корневым рядом.

Доказательство. Ввиду теоремы 1 из (7) каждая из подгрупп 
23/, а значит и 55, порождается конечным множеством своих под­
групп, изоморфных аддитивной группе рациональных чисел. Пусть 
2l/(t = l, 2, ..., т)—*подгруппы, изоморфные аддитивной группе ра­
циональных чисел, которые порождают S3. Выберем в каждой из под­
групп 21/ элемент А/, отличный от единицы. Пусть © — подгруппа 
с образующими At(i = 1, 2,..., т), а Е*—ее пополнение в ®. Оче- 
видио; что S c G’ и, по свойству минимальности пополнения ((3), § 2),

U . Но & обладает конечным рациональным рядом (следствие 2 
из теоремы 2).
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Тогда, по теореме 1, ®* обладает конечным корневым рядом, что 
и требовалось.

Используя (8), можно доказать лемму 1 и без ссылки на рабо­
ту Q

Нетрудно показать на примере, что лемма 1 неверна для ZA-rpynn 
с кручением.

Пусть ®— группа, элементами которой являются тройки рацио­
нальных чисел с законом композиции: (аг; by, с^ (ц2; by, с2) = +
+ я2 + Ь^у, by + b2; + с2).

Нетрудно видеть, что это полная ZA-группа без кручения с дли­
ной корневого ряда, равной трем. Она порождается двумя своими 
подгруппами, изоморфными аддитивной группе рациональных чисел. 
Фактор-группа группы ® по некоторой циклической подгруппе ее 
центра имеет уже бесконечный корневой ряд, но попрежнему порож­
дается двумя своими подгруппами, изоморфными аддитивной группе 
рациональных чисел.

Т е о р е м а 4. В ZA-группе ® без кручения конечное множество 
подгрупп 21/ с конечными рациональными рядами порождает под­
группу 21 с конечным рациональным рядом.

Доказательство. Вложим (У в полную ZA-группу без круче­
ния (3). Пополнения 21* подгрупп имеют конечные корневые ряды 
(теорема 1) и порождают, ввиду леммы 1, подгруппу 21’ с конечным 
корневым рядом. Так как 21 с 21*, то 21 обладает конечным рациональ­
ным рядом, что и требовалось.

Ввиду теоремы 3, отсюда следует также, что в ZA-группе без 
кручения конечное множество подгрупп конечных г2-рангов порож­
дают подгруппу с конечным г2-рангом.

Нетрудно показать, что в произвольной группе @ конечное мно­
жество подгрупп 21/ конечных гарантов порождают подгруппу 21 ко­
нечного Грранга, причем гарант группы 21 не превышает суммы 
ry-рангов подгрупп 21/.

Объединяя все вышесказанное, получим следующий результат:
Теорема 5. В ZA-группе без кручения конечное множество 

подгрупп конечных, рангов (в любом из смыслов) порождает под­
группу конечного ранга (в том же смысле).

Теорема 6. В полной ZA группе без кручения все члены ниж­
него центрального ряда (вообще говоря, не доходящего до единицы) 
являются полными группами.

Доказательство. Пусть ®=®оз®1з...:Мс...с®,—нижний 
центральный ряд группы ®. Предположим, что полнота членов этого 
ряда доказана для всех a<S, и будем доказывать полноту ®з.

Если р предельное, то ®з = П®а является полной группой ввиду а<3
полноты ®а и однозначности извлечения корня в ® (3).

Если р непредельное, то 65g порождается коммутаторами вида 
[A; C/J, где At®p_i, Gt®. Если из каждого такого коммутатора в ®з 
неограниченно извлекается корень, то ®з является полной группой. 
Пусть ®р неполна, тогда найдется коммутатор С = [А; В], где A t®p-i, 
Bt®, такой, что С€®з, но корень некоторой степени из С (обозначим 
его С’/п) не принадлежит @3. Пусть 21, 25, К — пополнения цикличе­
ских подгрупп с образующими А, В, С соответственно. Подгруппа ®, 
порожденная подгруппами 21 и 25, обладая конечным корневым рядом 
(лемма 1), очевидно, нильпотентна и потому, по теореме 3 из (3), ком­
мутант группы % полон.

Ввиду полноты ® и однозначности извлечения корня в ® Ес®. 
Но Сб®!, тогда и Нетрудно видеть, однако, что ®хс®з
(®з-і предполагается полной!), т. е. С1/П€@з, вопреки предположению. 
Теорема доказана.
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Следствие. В полной ZA-грутше без кручения все члены убы­
вающего ряда коммутантов являются полными группами.

Условимся называть Л-группой такую группу, которая отлична от 
своего коммутанта и все ее истинные фактор-группы отличны от своих 
коммутантов.

Нетрудно видеть, что для /(-групп справедливо следующее утверж­
дение, являющееся очевидным обобщением теоремы 2 работы С. Н. Чер­
никова (4).

Лемма 2. Неполная (в смысле С. Н. Черникова) К-группа ® 
гомоморфна некоторой конечной абелевой группе.

Доказательство. Совершенно аналогично доказательству тео­
ремы 2 из (4).

Из леммы 2 непосредственно следует, что /(-группа полна тогда 
и только тогда, когда полна ее фактор-группа по коммутанту (пол­
нота берется в смысле С. Н. Черникова).

Теорема 7. ZA-группа полна тогда и только тогда, когда 
полна ее фактор-группа по коммутанту.

Теорема 8. Разрешимая группа полна (в смысле С. Н. Черни­
кова) тогда и только тогда, когда полна ее фактор-группа по 
коммутанту.

Теоремы 6, 7 и 8 дают обобщение теоремы 3 из (3) в различных 
направлениях.
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